A. | 12 | B. | 18 | C. | 16 | D. | 14 |
分析 若方程f(g(x))=0,則g(x)=-$\frac{3}{2}$,或g(x)=0,或g(x)=$\frac{3}{2}$,進而可得m值;不妨僅g(x)的三個零點分別為-a,0,a(0<a<1),若g(f(x))=0,則f(x)=-a,或f(x)=0,或f(x)=a,進而得到n值
解答 解:若方程f(g(x))=0,則g(x)=-$\frac{3}{2}$,或g(x)=0,或g(x)=$\frac{3}{2}$,
此時方程有9個解;
不妨僅g(x)的三個零點分別為-a,0,a(0<a<1)
若g(f(x))=0,則f(x)=-a,或f(x)=0,或f(x)=a,
此時方程有9個解;
即m=n=9,
∴m+n=18,
故選:B.
點評 本題考查的知識點是數(shù)形結合思想,方程的根與函數(shù)零點之間的關系,難度中檔.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | e30 | B. | e${\;}^{\frac{100}{3}}$ | C. | e${\;}^{\frac{110}{3}}$ | D. | e40 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a>b>c | B. | c>a>b | C. | b>c>a | D. | a<b<c |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com