分析 (1)利用已知條件真假通過f(0)=0,g(0)=01就a,b即可.
(2)設(shè)投入經(jīng)銷B商品的資金為x萬元(0<x≤5),則投入經(jīng)銷A商品的資金為(5-x)萬元,設(shè)所獲得的收益為S(x)萬元,則S(x)=2(5-x)+6ln(x+1)=6ln(x+1)-2x+10(0<x≤5).通過函數(shù)的導(dǎo)數(shù),求解函數(shù)的最值即可.
解答 解:(1)由投資額為零時(shí)收益為零,可知f(0)=-a+2=0,g(0)=6lnb=0,
解得a=2,b=1.
(2)由(1)可得f(x)=2x,g(x)=6ln(x+1).
設(shè)投入經(jīng)銷B商品的資金為x萬元(0<x≤5),則投入經(jīng)銷A商品的資金為(5-x)萬元,
設(shè)所獲得的收益為S(x)萬元,則S(x)=2(5-x)+6ln(x+1)=6ln(x+1)-2x+10(0<x≤5).
S′(x)=,-2,令S′(x)=0,得x=2.
當(dāng)0<x<2時(shí),S′(x)>0,函數(shù)S(x)單調(diào)遞增;
當(dāng)2<x≤5時(shí),S′(x)<0,函數(shù)S(x)單調(diào)遞減.
∴當(dāng)x=2時(shí),函數(shù)S(x)取得最大值,S(x)max=S(2)=6ln3+6≈12.6萬元.
∴當(dāng)投入經(jīng)銷A商品3萬元,B商品2萬元時(shí),他可獲得最大收益,收益的最大值約為12.6萬元.
點(diǎn)評 本題考查函數(shù)的解析式以及函數(shù)的導(dǎo)數(shù)的應(yīng)用,考查分析問題解決問題的能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分非必要條件 | B. | 必要非充分條件 | ||
C. | 充要條件 | D. | 既非充分也非必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(sinx)>f(cosx) | B. | f($\frac{{x}^{2}+1}{2}$)>f(x) | ||
C. | f($\frac{1}{{3}^{x}+1}$)≥f($\frac{1}{{2}^{x}+1}$) | D. | f($\frac{1}{{3}^{x}+{3}^{-x}}$)≥f($\frac{1}{{2}^{x}+{2}^{-x}}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com