10.某個(gè)體戶計(jì)劃經(jīng)銷A,B兩種商品,據(jù)調(diào)查統(tǒng)計(jì),當(dāng)投資額為x(x≥0)萬元時(shí),在經(jīng)銷A,B商品中所獲得的收益分別為f(x)萬元與g(x)萬元,其中f(x)=a(x-1)+2,g(x)=6ln(x+b),(a>0,b>0)已知投資額為零時(shí),收益為零.
(1)求a、b的值;
(2)如果該個(gè)體戶準(zhǔn)備投入5萬元經(jīng)銷這兩種商品,請你幫他制定一個(gè)資金投入方案,使他能獲得最大利潤.

分析 (1)利用已知條件真假通過f(0)=0,g(0)=01就a,b即可.
(2)設(shè)投入經(jīng)銷B商品的資金為x萬元(0<x≤5),則投入經(jīng)銷A商品的資金為(5-x)萬元,設(shè)所獲得的收益為S(x)萬元,則S(x)=2(5-x)+6ln(x+1)=6ln(x+1)-2x+10(0<x≤5).通過函數(shù)的導(dǎo)數(shù),求解函數(shù)的最值即可.

解答 解:(1)由投資額為零時(shí)收益為零,可知f(0)=-a+2=0,g(0)=6lnb=0,
解得a=2,b=1.
(2)由(1)可得f(x)=2x,g(x)=6ln(x+1).
設(shè)投入經(jīng)銷B商品的資金為x萬元(0<x≤5),則投入經(jīng)銷A商品的資金為(5-x)萬元,
設(shè)所獲得的收益為S(x)萬元,則S(x)=2(5-x)+6ln(x+1)=6ln(x+1)-2x+10(0<x≤5).
S′(x)=,-2,令S′(x)=0,得x=2.
當(dāng)0<x<2時(shí),S′(x)>0,函數(shù)S(x)單調(diào)遞增;
當(dāng)2<x≤5時(shí),S′(x)<0,函數(shù)S(x)單調(diào)遞減.
∴當(dāng)x=2時(shí),函數(shù)S(x)取得最大值,S(x)max=S(2)=6ln3+6≈12.6萬元.
∴當(dāng)投入經(jīng)銷A商品3萬元,B商品2萬元時(shí),他可獲得最大收益,收益的最大值約為12.6萬元.

點(diǎn)評 本題考查函數(shù)的解析式以及函數(shù)的導(dǎo)數(shù)的應(yīng)用,考查分析問題解決問題的能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在平面直角坐標(biāo)系中,“點(diǎn)M的坐標(biāo)滿足方程4$\sqrt{x}$+y=0”是“點(diǎn)M在曲線y2=16x上”的( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知向量$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow$=(cosβ,sinβ),且$\overrightarrow{a}$,$\overrightarrow$滿足關(guān)系|k$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{3}$|$\overrightarrow{a}$-k$\overrightarrow$|(k為正數(shù)).
(1)求$\overrightarrow{a}$與$\overrightarrow$的數(shù)量積用k表示的解析式f(k).
(2)$\overrightarrow{a}$能否與$\overrightarrow$垂直?$\overrightarrow{a}$能否與$\overrightarrow$平行?若不能,說明理由;若能,求出相應(yīng)的k值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若f(x)是定義在(-1,1)上的減函數(shù),則下列不等式正確的是(  )
A.f(sinx)>f(cosx)B.f($\frac{{x}^{2}+1}{2}$)>f(x)
C.f($\frac{1}{{3}^{x}+1}$)≥f($\frac{1}{{2}^{x}+1}$)D.f($\frac{1}{{3}^{x}+{3}^{-x}}$)≥f($\frac{1}{{2}^{x}+{2}^{-x}}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知f(x)=x+asinx.
(1)若a=1.求f(x)在區(qū)間[0,1]上的最大值;
(2)若f(x)在(-∞,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示,AF、DE分別是⊙O、⊙O1的直徑,AD與兩圓所在的平面均垂直,AD=8,BC是⊙O的直徑,AB=AC=6,OE∥AD.
(1)證明:EF∥面BCD;
(2)證明:面ACD⊥面CEF;
(3)求三棱錐O1-OBF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知數(shù)列{an}為等差數(shù)列,a4=9,d=-2,則S4=48.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.等差數(shù)列的前n項(xiàng)和也構(gòu)成一個(gè)等差數(shù)列,即Sn,S2n-Sn,S3n-S2n,…為等差數(shù)列,公差為n2d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若復(fù)數(shù)(2+bi)(1+i)是純虛數(shù),則實(shí)數(shù)b的值為2.

查看答案和解析>>

同步練習(xí)冊答案