15.已知定義在R上的函數(shù)f(x)在(-∞,2)內(nèi)為減函數(shù),且f(x+2)為偶函數(shù),則 f(-1),f(4),f($\frac{11}{2}$)的大小為(  )
A.f(4)<f(-1)<f($\frac{11}{2}$)B.f(-1)<f(4)<f($\frac{11}{2}$)C.f($\frac{11}{2}$)<f(4)<f(-1)D.f(-1)<f($\frac{11}{2}$)<f(4)

分析 f(x+2)為偶函數(shù),可得f(x+2)=f(-x+2),所以f(4)=f(0),f($\frac{11}{2}$)=f(-$\frac{3}{2}$),利用定義在R上的函數(shù)f(x)在(-∞,2)內(nèi)為減函數(shù),即可得出結(jié)論.

解答 解:∵f(x+2)為偶函數(shù),∴f(x+2)=f(-x+2),
∴f(4)=f(0),f($\frac{11}{2}$)=f(-$\frac{3}{2}$),
∵0$>-1>-\frac{3}{2}$,定義在R上的函數(shù)f(x)在(-∞,2)內(nèi)為減函數(shù),
∴f(4)<f(-1)<f($\frac{11}{2}$),
故選A.

點評 本題考查了抽象函數(shù)的應(yīng)用,考查學(xué)生轉(zhuǎn)化問題的能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點為F1,F(xiàn)2,P是橢圓上任意一點,且|PF1|+|PF2|=2$\sqrt{2}$,它的焦距為2
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知直線x-y+t=0與橢圓C交于不同的兩點A,B,且線段AB的中點不在圓x2+y2=$\frac{10}{9}$內(nèi),求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+2,x≤-1}\\{{x}^{2},-1<x<2}\\{2x,x≥2}\end{array}\right.$
(1)求f(f(-2));
(2)畫出函數(shù)f(x)的圖象,根據(jù)圖象寫出函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在△ABC中,cosB=-$\frac{5}{13}$,sinC=$\frac{3}{5}$
(Ⅰ)求sinA的值;
(Ⅱ)若△ABC的面積S${\;}_{△ABC}=\frac{33}{2}$,求BC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}是公差為正數(shù)的等差數(shù)列,其前n項和為Sn,且a2•a3=15,S4=16.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)數(shù)列{bn}滿足b1=a1,$_{n+1}-_{n}=\frac{1}{{a}_{n}•{a}_{n+1}}$.
①求數(shù)列{bn}的通項公式;
②是否存在正整數(shù)m,n(m≠n),使得b2,bm,bn成等差數(shù)列?若存在,求出m,n的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)為R上的偶函數(shù).當(dāng)x≤0時,f(x)=4-x-a•2-x(a>0)
(Ⅰ)求函數(shù)f(x)在(0,+∞)上的解析式;
(Ⅱ)求函數(shù)f(x)在(0,+∞)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.A,B兩種規(guī)格的產(chǎn)品需要在甲、乙兩臺機器上各自加工一道工序才能成為成品.已知A產(chǎn)品需要在甲機器上加工3小時,在乙機器上加工1小時;B產(chǎn)品需要在甲機器上加工1小時,在乙機器上加工3小時.在一個工作日內(nèi),甲機器至多只能使用11小時,乙機器至多只能使用9小時.A產(chǎn)品每件利潤300元,B產(chǎn)品每件利潤400元,求在一個工作日內(nèi)的利潤最大時,需要生產(chǎn)甲產(chǎn)品與乙產(chǎn)品多少件?
(在如圖所示平面直角坐標系中畫圖)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知在△ABC中,∠ACB=90°,BC=6,AC=8,P是線段AB上的點,則P到AC,BC的距離的乘積的最大值為(  )
A.12B.8C.$8\sqrt{3}$D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若集合X={x|-2≤x≤2,且x∈Z},下列關(guān)系式中成立的為( 。
A.0⊆XB.{0}∈XC.{0}⊆XD.∅∈X

查看答案和解析>>

同步練習(xí)冊答案