3.已知等比數(shù)列{an}和等差數(shù)列{bn}均是首項(xiàng)為1的遞增數(shù)列,且a2=b2,a3=b4
(I)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{cn}滿(mǎn)足cn=an+(-1)nbn,求數(shù)列{cn)前n項(xiàng)和Sn

分析 (I)利用等差數(shù)列與等比數(shù)列的通項(xiàng)公式即可得出.
(II)cn=an+(-1)nbn=2n-1+(-1)n•n.對(duì)n分類(lèi)討論,分求和,利用等比數(shù)列的前n項(xiàng)和公式即可得出.

解答 解:(I)設(shè)等比數(shù)列{an}的公比為q,等差數(shù)列{bn}的公差為d>0,∵a2=b2,a3=b4
∴q=1+d,q2=1+3d,解得q=2,d=1.
∴an=2n-1,bn=1+(n-1)=n.
(II)cn=an+(-1)nbn=2n-1+(-1)n•n.
∴n=2k(k∈N*)時(shí),數(shù)列{cn)前n項(xiàng)和Sn=S2k=$\frac{{2}^{n}-1}{2-1}$+(2-1)+(4-3)+…+[n-(n-1)]=2n-1+k=2n-1+$\frac{n}{2}$.
n=2k-1時(shí),Sn=S2k-1=$\frac{{2}^{n}-1}{2-1}$-1+(2-3)+(4-5)+…+[(n-1)-n)]=2n-1-1-(k-1)=2n-1-$\frac{n+1}{2}$=2n-$\frac{n+3}{2}$.
∴Sn=$\left\{\begin{array}{l}{{2}^{n}-1+\frac{n}{2},n=2k}\\{{2}^{n}-\frac{n+3}{2},n=2k-1}\end{array}\right.$(k∈N*).

點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、分類(lèi)討論方法、分組求和,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是C1D1,CC1的中點(diǎn),則異面直線AE與BF所成角的余弦值為( 。
A.-$\frac{{5\sqrt{6}}}{18}$B.-$\frac{{\sqrt{5}}}{5}$C.$\frac{{\sqrt{6}}}{5}$D.$\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知點(diǎn)M(m,n)在直線x+2$\sqrt{2}$y-3=0上,則$\sqrt{{m}^{2}+{n}^{2}}$的最小值為( 。
A.1B.2C.3D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)向量$\overrightarrow a$=(1,x),$\overrightarrow b$=(x,4),則“x=$\int_{1}^{e}{\frac{2}{t}}$dt”(e=2.718…是自然對(duì)數(shù)的底數(shù))是“$\overrightarrow a$∥$\overrightarrow b$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{k}{x}$(k>0),xOy平面上兩點(diǎn)A,B的坐標(biāo)分別為(-1,f(1)),(3,f(-3)),且滿(mǎn)足$\overrightarrow{OA•}\overrightarrow{OB}$=-15.
(1)求兩點(diǎn)A、B的坐際:
(2)求|$\overrightarrow{AB}$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.等差數(shù)列{an}中,a3+a4+a8=12,則前9項(xiàng)和S9=( 。
A.18B.24C.36D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.?dāng)?shù)列{an}滿(mǎn)足a1=1,an+1=$\frac{n+1}{n}$an+n+1,n∈N*,且前n項(xiàng)和為Sn,則$\frac{{S}_{n}}{n}$-$\frac{1}{2}$an取最大值時(shí)n的值為1或2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)數(shù)列{an}的前n項(xiàng)和Sn,且滿(mǎn)足Sn+1-2Sn=n+1,已知a1=1.
(1)求an的通項(xiàng)公式;
(2)若bn=n•an,求b1+b2+…+bn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=|x+1|+2|x-a2|(a∈R).
(1)若函數(shù)f(x)的最小值為3,求a的值:
(2)在(1)的條件下,若直線y=m與函數(shù)y=f(x)的圖象圍成一個(gè)三角形,求m的范圍,并求圍成的三角形面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案