19.直線$l:\frac{x}{2}+\frac{y}{3}=1$的斜率為(  )
A.$-\frac{2}{3}$B.$\frac{3}{2}$C.$\frac{2}{3}$D.$-\frac{3}{2}$

分析 利用直線方程直接求解直線的斜率即可.

解答 解:直線$l:\frac{x}{2}+\frac{y}{3}=1$的斜截式方程為:y=$-\frac{3}{2}$x+3,直線的斜率為:$-\frac{3}{2}$.
故選:D.

點評 本題考查直線方程的應(yīng)用,斜率的求法,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若關(guān)于x的不等式x2+ax-2>0在區(qū)間[1,2]上有解,則實數(shù)a的取值范圍為( 。
A.(-∞,-1)B.(-∞,1)C.(1,+∞)D.(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在△ABC中,∠A,∠B,∠C所對的邊分別為a,b,c,若∠B=∠C,且$7{a^2}+{b^2}+{c^2}=4\sqrt{3}$,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)函數(shù)f(x)=x3+ax2-ax+m(a∈R,m∈R).
(Ⅰ)若函數(shù)f(x)在[-2,0]上是減函數(shù),求實數(shù)a的取值范圍;
(Ⅱ)若對任意的a∈[3,6],不等式f(x)≤0在x∈[-2,0]恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知復(fù)數(shù)z滿足(1+3i)z=10,則z=(  )
A.-1-3iB.1+3iC.-1+3iD.1-3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖正方體ABCD-A1B1C1D1外接球O,過點O作一平面,則截面圖形不可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知奇函數(shù)y=f(x)滿足:f(x)=f(x+2),且當(dāng)x∈(0,1)時,f(x)=2x-1,則f(-4.5)=( 。
A.-2B.-1C.$-\frac{1}{2}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知圓C:(x-2)2+y2=3.
(Ⅰ)若過定點(-1,0)且傾斜角α=30°的直線l與圓C相交于A,B兩點,求線段AB的中點P的坐標(biāo);
(Ⅱ)從圓C外一點P作圓C的一條切線,切點為M,O為坐標(biāo)原點,且|PM|=|PO|,求使|PM|最小的點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合M={x|y=log2(x+6)},N={x|x-4≥2},則M∩N=( 。
A.(-3,2]B.(-6,+∞)C.[6,+∞)D.[-3,+∞)

查看答案和解析>>

同步練習(xí)冊答案