精英家教網 > 高中數學 > 題目詳情
10.設函數f(x)=$\left\{\begin{array}{l}-2{x^2}+1(x≥1)\\ lo{g_2}(1-x)(x<1)\end{array}\right.$,若f(f(a))=3,則a=$2或\frac{127}{128}$.

分析 利用分段函數,通過a的范圍,列出方程求解即可.

解答 解:函數f(x)=$\left\{\begin{array}{l}-2{x^2}+1(x≥1)\\ lo{g_2}(1-x)(x<1)\end{array}\right.$,若f(f(a))=3,當a≥1時,
可得:f(-2a2+1)=3,可得log2(2a2)=3,解得a=2.
當a<1時,
可得:f(log2(1-a))=3,log2(1-a)>1時,可得$-2(lo{g}_{2}(1-a))^{2}+1=3$,解得a∈∅.
log2(1-a)<1時,可得log2(1-log2(1-a))=3,即1-log2(1-a)=8,log2(1-a)=-7,
1-a=$\frac{1}{128}$,可得a=$\frac{127}{128}$.
故答案為:2或$\frac{127}{128}$.

點評 本題考查分段函數的應用,函數的零點與方程根的關系,考查計算能力.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

20.二次函數f(x)=-x2+6x在區(qū)間[0,4]上的最大值是9.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.執(zhí)行如圖所示的程序框圖(其中[x]表示不超過實數x的最大整數),則運行后輸出的結果是(  )
A.31B.32C.35D.37

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.已知圓C:x2+y2-4x=0,直線l:mx-y+3m=0,則( 。
A.l與C相交B.l與C相切
C.l與C相離D.以上三個選項均有可能

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.已知直線x=2與雙曲線C:$\frac{{x}^{2}}{4}$-y2=1的漸近線交于E1、E2兩點,記$\overrightarrow{O{E}_{1}}$=$\overrightarrow{{e}_{1}}$,$\overrightarrow{O{E}_{2}}$=$\overrightarrow{{e}_{2}}$,任取雙曲線C上的點P,若$\overrightarrow{OP}$=a$\overrightarrow{{e}_{1}}$+b$\overrightarrow{{e}_{2}}$(a,b∈R),則( 。
A.0<a2+b2<1B.0<a2+b2<$\frac{1}{2}$C.a2+b2≥1D.a2+b2≥$\frac{1}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.方程組$\left\{\begin{array}{l}{2x-y=3}\\{x+y=3}\end{array}\right.$的解是(  )
A.$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$B.$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$C.$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$D.$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.若函數f(x)=4x2-kx-8在[5,8]上不是單調函數,則k的取值范圍是( 。
A.(40,64)B.[40,64]C.(-∞,40)∪(64,+∞)D.(-∞,40]∪[64,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.在△ABC中,角A,B,C的對邊分別為a,b,c,已知向量$\overrightarrow m=(cosA,cosB)$,$\overrightarrow n=(a,2c-b)$,且$\overrightarrow m∥\overrightarrow n$.
(Ⅰ)求角A的大。
(Ⅱ)求sinB+sinC的最大值并判斷此時△ABC的形狀.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.已知數組:$({\frac{1}{1}}),({\frac{1}{2},\frac{2}{1}}),({\frac{1}{3},\frac{2}{2},\frac{3}{1}}),({\frac{1}{4},\frac{2}{3},\frac{3}{2},\frac{4}{1}}),…,({\frac{1}{n},\frac{2}{n-1},\frac{3}{n-2},…\frac{n-1}{2},\frac{n}{1}})$,記該數組為:(a1),(a2,a3),(a3,a4,a5),…則a2009=7.

查看答案和解析>>

同步練習冊答案