10.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}-2{x^2}+1(x≥1)\\ lo{g_2}(1-x)(x<1)\end{array}\right.$,若f(f(a))=3,則a=$2或\frac{127}{128}$.

分析 利用分段函數(shù),通過(guò)a的范圍,列出方程求解即可.

解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}-2{x^2}+1(x≥1)\\ lo{g_2}(1-x)(x<1)\end{array}\right.$,若f(f(a))=3,當(dāng)a≥1時(shí),
可得:f(-2a2+1)=3,可得log2(2a2)=3,解得a=2.
當(dāng)a<1時(shí),
可得:f(log2(1-a))=3,log2(1-a)>1時(shí),可得$-2(lo{g}_{2}(1-a))^{2}+1=3$,解得a∈∅.
log2(1-a)<1時(shí),可得log2(1-log2(1-a))=3,即1-log2(1-a)=8,log2(1-a)=-7,
1-a=$\frac{1}{128}$,可得a=$\frac{127}{128}$.
故答案為:2或$\frac{127}{128}$.

點(diǎn)評(píng) 本題考查分段函數(shù)的應(yīng)用,函數(shù)的零點(diǎn)與方程根的關(guān)系,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.二次函數(shù)f(x)=-x2+6x在區(qū)間[0,4]上的最大值是9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.執(zhí)行如圖所示的程序框圖(其中[x]表示不超過(guò)實(shí)數(shù)x的最大整數(shù)),則運(yùn)行后輸出的結(jié)果是( 。
A.31B.32C.35D.37

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知圓C:x2+y2-4x=0,直線l:mx-y+3m=0,則( 。
A.l與C相交B.l與C相切
C.l與C相離D.以上三個(gè)選項(xiàng)均有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知直線x=2與雙曲線C:$\frac{{x}^{2}}{4}$-y2=1的漸近線交于E1、E2兩點(diǎn),記$\overrightarrow{O{E}_{1}}$=$\overrightarrow{{e}_{1}}$,$\overrightarrow{O{E}_{2}}$=$\overrightarrow{{e}_{2}}$,任取雙曲線C上的點(diǎn)P,若$\overrightarrow{OP}$=a$\overrightarrow{{e}_{1}}$+b$\overrightarrow{{e}_{2}}$(a,b∈R),則( 。
A.0<a2+b2<1B.0<a2+b2<$\frac{1}{2}$C.a2+b2≥1D.a2+b2≥$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.方程組$\left\{\begin{array}{l}{2x-y=3}\\{x+y=3}\end{array}\right.$的解是( 。
A.$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$B.$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$C.$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$D.$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若函數(shù)f(x)=4x2-kx-8在[5,8]上不是單調(diào)函數(shù),則k的取值范圍是(  )
A.(40,64)B.[40,64]C.(-∞,40)∪(64,+∞)D.(-∞,40]∪[64,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知向量$\overrightarrow m=(cosA,cosB)$,$\overrightarrow n=(a,2c-b)$,且$\overrightarrow m∥\overrightarrow n$.
(Ⅰ)求角A的大;
(Ⅱ)求sinB+sinC的最大值并判斷此時(shí)△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知數(shù)組:$({\frac{1}{1}}),({\frac{1}{2},\frac{2}{1}}),({\frac{1}{3},\frac{2}{2},\frac{3}{1}}),({\frac{1}{4},\frac{2}{3},\frac{3}{2},\frac{4}{1}}),…,({\frac{1}{n},\frac{2}{n-1},\frac{3}{n-2},…\frac{n-1}{2},\frac{n}{1}})$,記該數(shù)組為:(a1),(a2,a3),(a3,a4,a5),…則a2009=7.

查看答案和解析>>

同步練習(xí)冊(cè)答案