A. | (40,64) | B. | [40,64] | C. | (-∞,40)∪(64,+∞) | D. | (-∞,40]∪[64,+∞) |
分析 先求出二次函數(shù)的對(duì)稱軸,欲使函數(shù)在[5,8]上不是單調(diào)函數(shù)只需對(duì)稱軸在這個(gè)區(qū)間上,從而建立不等式,解之即可.
解答 解:根據(jù)二次函數(shù)的性質(zhì)知對(duì)稱軸 x=$\frac{k}{8}$,
在[5,8]上不是單調(diào)函數(shù)則對(duì)稱軸在這個(gè)區(qū)間上,
則5<$\frac{k}{8}$<8,
解得40<k<64,
故選:A
點(diǎn)評(píng) 本題考查二次函數(shù)的性質(zhì),本題解題的關(guān)鍵是看出二次函數(shù)在一個(gè)區(qū)間不單調(diào),只有對(duì)稱軸在這個(gè)區(qū)間上,本題是一個(gè)基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{4}{3}$ | B. | -$\frac{3}{4}$ | C. | -$\frac{4}{5}$ | D. | ±$\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com