分析 由已知等式化簡可得sinθ(2cosθ+1)=0,結(jié)合范圍θ∈($\frac{π}{2}$,π),解得cosθ=-$\frac{1}{2}$,利用同角三角函數(shù)基本關(guān)系式可求tanθ,利用二倍角的正切函數(shù)公式可求tan2θ的值.
解答 解:∵sin2θ+sinθ=0,
⇒2sinθcosθ+sinθ=0,
⇒sinθ(2cosθ+1)=0,
∵θ∈($\frac{π}{2}$,π),sinθ≠0,
∴2cosθ+1=0,解得:cosθ=-$\frac{1}{2}$,
∴tanθ=-$\sqrt{\frac{1}{co{s}^{2}θ}-1}$=-$\sqrt{3}$,
∴tan2θ=$\frac{2tanθ}{1-ta{n}^{2}θ}$=$\sqrt{3}$.
故答案為:$\sqrt{3}$.
點評 本題主要考查了同角三角函數(shù)基本關(guān)系式,二倍角的正切函數(shù)公式在三角函數(shù)化簡求值中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 40 | B. | 45 | C. | 50 | D. | 55 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | k的最大值為2-e-$\frac{1}{e}$ | B. | k的最小值為2-e-$\frac{1}{e}$ | ||
C. | k的最大值為2 | D. | k的最小值為2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 60° | B. | 75° | C. | 90° | D. | 105° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ②④ | B. | ①④ | C. | ①③ | D. | ③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com