【題目】已知下列三個(gè)命題: ①若一個(gè)球的半徑縮小到原來的 ,則其體積縮小到原來的 ;
②若兩組數(shù)據(jù)的平均數(shù)相等,則它們的標(biāo)準(zhǔn)差也相等;
③直線x+y+1=0與圓x2+y2= 相切.
其中真命題的序號(hào)是 .
【答案】①③
【解析】解:①因?yàn)榍虻捏w積是半徑的三次函數(shù)關(guān)系,所以一個(gè)球的半徑縮小到原來的 ,則其體積縮小到原來的 ,所以①正確. ②根據(jù)平均數(shù)和標(biāo)準(zhǔn)差的公式可知若兩組數(shù)據(jù)的平均數(shù)相等,則它們的標(biāo)準(zhǔn)差不一定相等,所以②錯(cuò)誤.
③圓心到直線的距離d= 等于半徑,所以直線x+y+1=0與圓x2+y2= 相切,所以③正確.
所以答案是:①③.
【考點(diǎn)精析】本題主要考查了命題的真假判斷與應(yīng)用的相關(guān)知識(shí)點(diǎn),需要掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+blnx在x=1處有極值 .
(Ⅰ)求a,b的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】曲線C:ρ2﹣2ρcosθ﹣8=0 曲線E: (t是參數(shù))
(1)求曲線C的普通方程,并指出它是什么曲線.
(2)當(dāng)k變化時(shí)指出曲線K是什么曲線以及它恒過的定點(diǎn)并求曲線E截曲線C所得弦長(zhǎng)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣2x+2(x∈R).
(1)求f(x)的最小值;
(2)求證:x>0時(shí),ex>x2﹣2x+1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,長(zhǎng)方體的長(zhǎng)、寬、高分別為5 cm,4 cm,3 cm.一只螞蟻從A點(diǎn)到C1點(diǎn)沿著表面爬行的最短路程是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3+bx2+cx+d的圖象如圖,則函數(shù)y=lnf′(x)的單調(diào)減區(qū)間為( )
A.[0,3)
B.[﹣2,3]
C.(﹣∞,﹣2)
D.[3,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= x2﹣tcosx.若其導(dǎo)函數(shù)f′(x)在R上單調(diào)遞增,則實(shí)數(shù)t的取值范圍為( )
A.[﹣1,﹣ ]
B.[﹣ , ]
C.[﹣1,1]
D.[﹣1, ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) .
(Ⅰ)若 ,求f(x)的極值;
(Ⅱ)若f(x)在定義域上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com