已知過球面上A、B、C三點(diǎn)的截面和球心的距離是球直徑的,且,則球面的面積為           
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(本小題滿分12分)
如圖,在四棱錐P-ABCD中,底面ABCD是一直角梯形,,AD//BC, AB=BC=1,AD=2,PA底面ABCD,PD與底面成角,點(diǎn)E是PD的中點(diǎn).

(1)  求證:BEPD;
(2)  求二面角P-CD-A的余弦值.            

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

10分)
如圖,四邊形ABCD是平行四邊形,點(diǎn)P是平面ABCD外一點(diǎn),M是PC的中點(diǎn),在DM上取一點(diǎn)G,過G和AP作平面交平面BDM于GH,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
如圖,在三棱錐P-ABC中,⊿PAB是等邊三角形,D,E分別為AB,PC的中點(diǎn).
(1)在BC邊上是否存在一點(diǎn)F,使得PB∥平面DEF
(2)若∠PAC=∠PBC=90º,證明:AB⊥PC
(3)在(2)的條件下,若AB=2,AC=求三棱錐P-ABC的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
在長方體中,點(diǎn)上的動(dòng)點(diǎn),點(diǎn)的中點(diǎn).

(1)當(dāng)點(diǎn)在何處時(shí),直線//平面,并證明你的結(jié)論;
(2)在(Ⅰ)成立的條件下,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知梯形中,,
,分別是上的點(diǎn),,的中點(diǎn)。沿將梯形翻折,使平面⊥平面 (如圖) .

(Ⅰ)當(dāng)時(shí),求證: ;
(Ⅱ)以為頂點(diǎn)的三棱錐的體積記為,求的最大值;
(Ⅲ)當(dāng)取得最大值時(shí),求鈍二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(本小題滿分12分)
如圖,已知中,平面,
分別為的中點(diǎn).
(1)求證:平面平面
(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共12分)(注意:在試題卷上作答無效)
如圖,四棱錐S -ABCD的底面是邊長為3的正方形,SD丄底面ABCD,SB=,點(diǎn)E、G分別在AB、SC上,且
(1) 證明:BC//平面SDE;
(2) 求面SAD與面SBC所成二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在正四棱錐S-ABCD中,E是BC的中點(diǎn),P點(diǎn)在側(cè)面內(nèi)及其邊界上運(yùn)動(dòng),并且總是保持PEAC.則動(dòng)點(diǎn)P的軌跡與△SCD組成的相關(guān)圖形最有可能的是(   ).
 

查看答案和解析>>

同步練習(xí)冊(cè)答案