5.“a=1”是“函數(shù)f(x)=a|x|+b,b∈R在區(qū)間[0,+∞)上為增函數(shù)”的(  )
A.充分非必要條件B.必要非充分條件
C.充要條件D.既非充分又非必要條件

分析 當(dāng)x≥0時(shí),f(x)=a|x|+b=ax+b,當(dāng)a>0時(shí),函數(shù)f(x)單調(diào)遞增.即可判斷出.

解答 解:當(dāng)x≥0時(shí),f(x)=a|x|+b=ax+b,當(dāng)a>0時(shí),函數(shù)f(x)單調(diào)遞增.
∴“a=1”是“函數(shù)f(x)=a|x|+b,b∈R在區(qū)間[0,+∞)上為增函數(shù)”的充分不必要條件.
故選:A.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、簡(jiǎn)易邏輯的判定方法,考查了推理能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知向量$\overrightarrow a=(x-1,2),\overrightarrow b=(2,1)$,則$\overrightarrow a⊥\overrightarrow b$的充要條件是x=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在公差不為0的等差數(shù)列{an}中,2a4-a92+2a14=0,數(shù)列{bn}是等比數(shù)列,且a9=b9,則b8b10=( 。
A.4B.16C.8D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,已知矩形ABCD和矩形ADEF所在平面互相垂直,點(diǎn)M,N分別在對(duì)角線BD、AE上,且BM=$\frac{1}{3}$BD,AN=$\frac{1}{3}$AE,求證:MN∥平面CDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)f(x)=$\left\{\begin{array}{l}{(x-1)^{2}(x≤1)}\\{x-1(x>1)}\end{array}\right.$,則f[f($\frac{3}{2}$)]=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{{9}^{x}+{3}^{x+1}+a}{{3}^{x}}$.
(1)若f(x)是偶函數(shù),求實(shí)數(shù)a的值;
(2)若對(duì)任意x∈[0,+∞),都有f(x)>0,求實(shí)數(shù)a的取值范圍;
(3)若f(x)在區(qū)間[0,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知x,y滿足滿足約束條件$\left\{\begin{array}{l}x+y≤10\;\\ x-y≤2\;\\ x≥3\end{array}\right.$,那么z=x2+y2的最大值為58.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{y≥2x-2}\\{y≥-x+1}\\{y≤x+1}\end{array}\right.$,則z=2x-y的最小值為(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)f(x)的圖象與曲線y=x2-2x+3關(guān)于y軸對(duì)稱,則f(x)=x2+2x+3.

查看答案和解析>>

同步練習(xí)冊(cè)答案