分析 由條件利用二倍角公式化簡所給的式子,可得結(jié)果.
解答 解:∵π<α<$\frac{3π}{2}$,∴$\frac{π}{2}$<$\frac{α}{2}$<$\frac{3π}{4}$,∴sin$\frac{α}{2}$>0,cos$\frac{α}{2}$<0,
∴$\frac{1+sinα}{\sqrt{1+cosα}-\sqrt{1-cosα}}$+$\frac{1-sinα}{\sqrt{1+cosα}+\sqrt{1-cosα}}$=$\frac{1+sinα}{|\sqrt{2}cos\frac{α}{2}|-|\sqrt{2}sin\frac{α}{2}|}$+$\frac{1-sinα}{|\sqrt{2}cos\frac{α}{2}|+|\sqrt{2}sin\frac{α}{2}|}$
=$\frac{1+sinα}{\sqrt{2}(-cos\frac{α}{2}-sin\frac{α}{2})}$+$\frac{1-sinα}{\sqrt{2}(-cos\frac{α}{2}+sin\frac{α}{2})}$=$\frac{{(cos\frac{α}{2}+sin\frac{α}{2})}^{2}}{-\sqrt{2}•(cos\frac{α}{2}+sin\frac{α}{2})}$+$\frac{{(sin\frac{α}{2}-cos\frac{α}{2})}^{2}}{\sqrt{2}•(sin\frac{α}{2}-cos\frac{α}{2})}$=-$\frac{\sqrt{2}}{2}$(cos$\frac{α}{2}$+sin$\frac{α}{2}$)+$\frac{\sqrt{2}}{2}$(sin$\frac{α}{2}$-cos$\frac{α}{2}$)
=-$\sqrt{2}$cos$\frac{α}{2}$.
點(diǎn)評 本題主要考查三角函數(shù)的化簡求值,二倍角公式的應(yīng)用,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-1)∪(0,+∞) | B. | (-∞,-1]∪[0,+∞) | C. | (-1,0) | D. | [-1,0] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({1,\sqrt{2}})$ | B. | $({1,\sqrt{2}+1}]$ | C. | $({\sqrt{2},\sqrt{2}+1}]$ | D. | $[{\sqrt{2}+1,+∞})$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com