1.已知($\sqrt{x}$+$\frac{a}{{x}^{2}}$)n(其中a∈R)展開式中有且只有第六項(xiàng)二項(xiàng)式系數(shù)最大,且展開式中的常數(shù)是180,求a的值.

分析 如果n是奇數(shù),那么是中間兩項(xiàng)的二次項(xiàng)系數(shù)最大,如果n是偶數(shù),那么是最中間那項(xiàng)的二次項(xiàng)系數(shù)最大,由此可確定n的值,進(jìn)而利用展開式,根據(jù)常數(shù)項(xiàng),即可求出a的值.

解答 解:如果n是奇數(shù),那么是中間兩項(xiàng)的二次項(xiàng)系數(shù)相等且最大,如果n是偶數(shù),那么中間項(xiàng)的二次項(xiàng)系數(shù)最大.
∵($\sqrt{x}$+$\frac{a}{{x}^{2}}$)n(其中a∈R)展開式中有且只有第六項(xiàng)二項(xiàng)式系數(shù)最大,
∴n=10,
∴($\sqrt{x}$+$\frac{a}{{x}^{2}}$)10其的通項(xiàng)為C10rar${x}^{\frac{10-5r}{2}}$,
令10-5r=0,
解得r=2,
∴C102a2=180,
解得a=±2.

點(diǎn)評 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式系數(shù)的性質(zhì),二項(xiàng)式展開式的通項(xiàng)公式,求展開式中某項(xiàng)的系數(shù),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知2acos2$\frac{C}{2}$+2ccos2$\frac{A}{2}$=3b,且△ABC的周長為6.
(1)求b的值;
(2)若B=$\frac{π}{6}$,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,角A、B、C所對的邊依次為a、b、c,bc=lg4+2lg5+3,且sin$\frac{A}{2}$=$\frac{\sqrt{5}}{5}$.
(1)求△ABC的面積;
(2)求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求值:$\frac{(\sqrt{3}tan12°-3)csc12°}{4co{s}^{2}12°-2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖,已知m,n是異面直線,點(diǎn)A,B∈m,且AB=6,點(diǎn)C,D∈n,且CD=4,若M,N分別是AC,BD的中點(diǎn),MN=2$\sqrt{2}$,則m與n所成角的余弦值是$\frac{5}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.若數(shù)列{an}的通項(xiàng)公式是an=(-1)•(3n-2),求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知圓經(jīng)過點(diǎn)A(3,2),圓心在直線y=2x上,且與直線y=2x+5相切,求圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.化簡:π<α<$\frac{3π}{2}$,$\frac{1+sinα}{\sqrt{1+cosα}-\sqrt{1-cosα}}$+$\frac{1-sinα}{\sqrt{1+cosα}+\sqrt{1-cosα}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)f(x)=$\frac{x}{{e}^{x}}$在點(diǎn)(1,f(1))處的切線方程是y=$\frac{1}{e}$.

查看答案和解析>>

同步練習(xí)冊答案