分析 ?x1,x2∈R,x1≠x2,$\frac{|f({x}_{1})-f({x}_{2})|}{|{x}_{1}-{x}_{2}|}$的取值范圍,轉化為利用導數求切線的斜率,即可得出.
解答 解:f′(x)=$\frac{x}{\sqrt{4+{x}^{2}}}$,
x=0時,f′(0)=0;
x>0時,f′(x)=$\frac{1}{\sqrt{\frac{4}{{x}^{2}}+1}}$∈(0,1);
x<0時,f′(x)=-$\frac{1}{\sqrt{\frac{4}{{x}^{2}}+1}}$∈(-1,0),
綜上可得:f′(x)∈[0,1).
即?x1,x2∈R,x1≠x2,$\frac{|f({x}_{1})-f({x}_{2})|}{|{x}_{1}-{x}_{2}|}$的取值范圍是[0,1).
故答案為:[0,1).
點評 本題考查了利用導數求切線的斜率、割線的斜率、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | 0 | D. | -1 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | f(sinx)>f(cosx) | B. | f($\frac{{x}^{2}+1}{2}$)>f(x) | ||
C. | f($\frac{1}{{3}^{x}+1}$)≥f($\frac{1}{{2}^{x}+1}$) | D. | f($\frac{1}{{3}^{x}+{3}^{-x}}$)≥f($\frac{1}{{2}^{x}+{2}^{-x}}$) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com