15.設(shè)A={(x,y)|y=2x+3},B={(x,y)|y=x+1},則A∩B={(-2,-1)}.

分析 聯(lián)立A與B中兩方程組成方程組,求出方程組的解即可得到兩集合的交集.

解答 解:聯(lián)立得:$\left\{\begin{array}{l}{y=2x+3}\\{y=x+1}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=-2}\\{y=-1}\end{array}\right.$,
則A∩B={(-2,-1)},
故答案為:{(-2,-1)}

點(diǎn)評 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)y=x-sinx在[${\frac{π}{2}$,$\frac{3π}{2}}$]上的最大值是( 。
A.$\frac{π}{2}$-1B.$\frac{3π}{2}$+1C.$\frac{π}{2}$-$\frac{{\sqrt{2}}}{2}$D.$\frac{3π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)f(x)=|2x+1|+|x-a|,a∈R.
(Ⅰ)當(dāng)a=2時(shí),求不等式f(x)<4的解集.
(Ⅱ)當(dāng)a<$-\frac{1}{2}$時(shí),對于?x∈(-∞,-$\frac{1}{2}$],都有f(x)+x≥3成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若雙曲線x2-$\frac{{y}^{2}}{m}$=1的一個(gè)焦點(diǎn)與拋物線y2=8x的焦點(diǎn)重合,則m值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知A,B為拋物線y2=2px(p>0)上的兩動(dòng)點(diǎn),F(xiàn)為其焦點(diǎn),且滿足∠AFB=60°,過弦AB的中點(diǎn)M作拋物線準(zhǔn)線的垂線,垂足為N,|MN|=λ|AB|,則λ的最大值為(  )
A.1B.$\frac{2\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=$\sqrt{2}$cosx(sinx+cosx).
(Ⅰ)若0<α<$\frac{π}{2}$,且sinα=$\frac{\sqrt{2}}{2}$,求f(α)的值;
(Ⅱ)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=4sin2($\frac{π}{4}$+x)-2$\sqrt{3}$cos2x-1,且給定條件p:x<$\frac{π}{4}$或x>$\frac{π}{2}$,x∈R,若條件q:-3<f(x)-m<3,且¬p是q的充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如圖,在△ABC中,$\frac{CD}{DA}$=$\frac{AE}{EB}$=$\frac{1}{2}$,記$\overrightarrow{BC}$=$\overrightarrow{a}$,$\overrightarrow{CA}$=$\overrightarrow$,則$\overrightarrow{ED}$=$\frac{\overrightarrow{a}-\overrightarrow}{3}$(用$\overrightarrow{a}$,$\overrightarrow$表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)F為拋物線y2=4x的焦點(diǎn),A是拋物線上一點(diǎn),B(-3,-3),設(shè)點(diǎn)A到y(tǒng)軸的距離為m,則m+|AB|的最小值為4.

查看答案和解析>>

同步練習(xí)冊答案