分析 根據(jù)題意,得出圓C的圓心C與半徑r,設點P(a,b)在圓C上,表示出$\overrightarrow{AP}$=(a+m,b),$\overrightarrow{BP}$=(a-m,b);利用∠APB=90°,求出m2,根據(jù)|OP|表示的幾何意義,得出m的取值范圍.
解答 解:∵圓C:(x-4)2+(y-3)2=4,
∴圓心C(4,3),半徑r=2;
設點P(a,b)在圓C上,則
$\overrightarrow{AP}$=(a+m,b),$\overrightarrow{BP}$=(a-m,b);
∵∠APB=90°,
∴(a+m)(a-m)+b2=0;
即m2=a2+b2;
∴|OP|=$\sqrt{{a}^{2}+^{2}}$,
∴|OP|的最大值是|OC|+r=5+2=7,最小值是|OC|-r=5-2=3;
∴m的取值范圍是[3,7].
故答案為[3,7].
點評 本題考查了平面向量的應用問題,也考查了直線與圓的應用問題,是綜合性題目.
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-1,1] | B. | $[{-\sqrt{2},\sqrt{2}}]$ | C. | [-2,2] | D. | $[{-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}}]$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
x | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 |
y | 0 | 2 | 3 | 2 | 0 | -1 | 0 | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com