A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 對①,運(yùn)用長方體模型,找出符合條件的直線和平面,即可判斷;
對②,運(yùn)用線面平行的性質(zhì)定理和線面垂直的性質(zhì)定理,即可判斷;
對③,運(yùn)用面面平行的性質(zhì)定理,即可判斷;
對④,由平行的傳遞性及線面角的定義,即可判斷④.
解答 解:對于命題①,可運(yùn)用長方體舉反例證明其錯誤:
如圖,不妨設(shè)AA′為直線m,CD為直線n,ABCD所在的平面為α,ABC′D′所在的平面為β,顯然這些直線和平面滿足題目條件,但α⊥β不成立;
命題②正確,證明如下:設(shè)過直線n的某平面與平面α相交于直線l,則l∥n,由m⊥α知m⊥l,從而m⊥n,結(jié)論正確;
由平面與平面平行的定義知命題如果α∥β,m?α,那么m∥β.③正確;
由平行的傳遞性及線面角的定義知命題:如果m∥n,α∥β,那么m與α所成的角和n與β所成的角相等,④正確.
故選:C.
點(diǎn)評 本題考查命題的真假判斷,考查空間線面、面面平行和垂直的位置關(guān)系,注意運(yùn)用判定定理和性質(zhì)定理,考查推理能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
患病 | 未患病 | 總計 | |
未服用藥 | a | b | 40 |
服用藥 | 5 | d | M |
總計 | 25 | N | 80 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [2,3] | B. | (1,3) | C. | (2,3] | D. | (-∞,-2]∪[1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({-\frac{5π}{12},\frac{π}{12}})$ | B. | $({\frac{π}{12},\frac{7π}{12}})$ | C. | $({-\frac{π}{6},\frac{π}{3}})$ | D. | $({-\frac{π}{12},\frac{5π}{12}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -16 | B. | -12 | C. | 12 | D. | 16 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com