2.禽流感是家禽養(yǎng)殖業(yè)的最大威脅.為檢驗(yàn)?zāi)承滤幬镱A(yù)防禽流感的效果,取80只家禽進(jìn)行試驗(yàn),得到如下丟失數(shù)據(jù)的列聯(lián)表:(c,d,M,N表示丟失的數(shù)據(jù))
患病未患病總計(jì)
未服用藥ab40
服用藥5dM
總計(jì)25N80
(1)求出a,b,d,M,N的值,并判斷:能否有99.5%的把握認(rèn)為藥物有效;
(2)若表中服用藥后患病的5只家禽分別為3只雞和2只鴨,現(xiàn)從這5只家禽中隨機(jī)選取2只,求這2只家禽是同一類的概率.
下面的臨界值表供參考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

分析 (1)由題意即可求得a,b和d的值及M和N的值;入求觀測(cè)值的公式,做出觀測(cè)值,把所得的觀測(cè)值K2同參考數(shù)據(jù)進(jìn)行比較,當(dāng)K2>7.879,即可判斷有99.5%的把握認(rèn)為藥物有效;
(2)求出基本事件的個(gè)數(shù),即可得出結(jié)論.

解答 解:(1)由題意,M=40,N=55,a=20,b=20,d=35,K2=$\frac{80(20×35-5×20)^{2}}{25×55×40×40}$≈13.1>7.879,
∴有99.5%的把握認(rèn)為藥物有效;
(2)從這5只家禽中隨機(jī)選取2只,共有${C}_{5}^{2}$=10種方法,這2只家禽是同一類的概率=$\frac{{C}_{3}^{2}+{C}_{2}^{2}}{10}$=0.4.

點(diǎn)評(píng) 本題考查獨(dú)立性檢驗(yàn)的列聯(lián)表,考查獨(dú)立性檢驗(yàn)的觀測(cè)值,考查概率的計(jì)算,是一個(gè)綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.向量$\overrightarrow a,\overrightarrow b$滿足|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow$|=2,($\overrightarrow{a}$+$\overrightarrow$)⊥(2$\overrightarrow{a}$-$\overrightarrow$),則向量$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.45°B.60°C.90°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),短軸長(zhǎng)2,兩焦點(diǎn)分別為F1,F(xiàn)2,過(guò)F1的直線交橢圓C于M,N兩點(diǎn),且△F2MN的周長(zhǎng)為8.
(1)求橢圓C的方程;
(2)直線l與橢圓C相交于A,B點(diǎn),點(diǎn)D為橢圓C上一點(diǎn),四邊形AOBD為矩形,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知橢圓C:$\frac{x^2}{25}+\frac{y^2}{9}$=1,F(xiàn)1,F(xiàn)2是該橢圓的左右焦點(diǎn),點(diǎn)A(4,1),P是橢圓上的一個(gè)動(dòng)點(diǎn),當(dāng)△APF1的周長(zhǎng)取最大值時(shí),△APF1的面積為$\frac{56}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若關(guān)于x的不等式|x-m|+|x+2|>4的解集為R,則實(shí)數(shù)m的取值范圍是( 。
A.(-2,6)B.(-∞,-6)∪(2,+∞)C.(-∞,-2)∪(6,+∞)D.(-6,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知sin($\frac{π}{3}$-α)=$\frac{1}{3}$,則sin($\frac{π}{6}$-2α)=( 。
A.$-\frac{7}{9}$B.$\frac{7}{9}$C.$±\frac{7}{9}$D.$-\frac{2}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知關(guān)于x的不等式(m-1)x2+(m-1)x+2>0
(1)若m=0,求該不等式的解集
(2)若該不等式的解集是R,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在正方體ABCD-A1B1C1D1中,M為DD1的中點(diǎn),O為AC的中點(diǎn),AB=1.
(1)求證:B1O⊥平面ACM;
(2)求三棱錐O-AB1M的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.α,β是兩個(gè)平面,m,n是兩條直線,有下列四個(gè)命題:
①如果m⊥n,m⊥α,n∥β,那么α⊥β.
②如果m⊥α,n∥α,那么m⊥n.
③如果α∥β,m?α,那么m∥β.
④如果m∥n,α∥β,那么m與α所成的角和n與β所成的角相等.
其中正確的命題的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案