13.已知不等式(mx+5)(x2-n)≤0對(duì)任意x∈(0,+∞)恒成立,其中m,n是整數(shù),則m+n的取值的集合為{-4,24}.

分析 對(duì)n分類討論,當(dāng)n≤0 時(shí),由(mx+5)(x2-n)≤0得到mx+5≤0,由一次函數(shù)的圖象知不存在;當(dāng)n>0 時(shí),由(mx+5)(x2-n)≤0,利用數(shù)學(xué)結(jié)合的思想得出m,n的整數(shù)解,進(jìn)而得到所求和.

解答 解:當(dāng)n≤0 時(shí),由(mx+5)(x2-n)≤0,得到mx+5≤0 在x∈(0,+∞) 上恒成立,則m不存在;
當(dāng)n>0 時(shí),由(mx+5)(x2-n)≤0,可設(shè)f(x)=mx+5,g(x)=x2-n,
那么由題意可知:$\left\{\begin{array}{l}{m<0}\\{-\frac{5}{m}=\sqrt{n}}\end{array}\right.$,
再由m,n是整數(shù)得到$\left\{\begin{array}{l}{m=-1}\\{n=25}\end{array}\right.$或 $\left\{\begin{array}{l}{m=-5}\\{n=1}\end{array}\right.$,
因此m+n=24或-4.
故答案為:{-4,24}.

點(diǎn)評(píng) 本題考查不等式恒成立等知識(shí),考查考生分類討論思想、轉(zhuǎn)化與化歸思想及運(yùn)算求解能力,屬于較難題,根據(jù)一元一次函數(shù)和一元二次函數(shù)的圖象和性質(zhì),得到兩個(gè)函數(shù)的零點(diǎn)相同是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在長(zhǎng)方形ABCD中,AB=2,AD=1,E為DC的中點(diǎn),將△DAE沿AE折起,平面DAE⊥平面ABCE,連DB,DC,BE.

(Ⅰ)求證:BE⊥平面ADE;
(Ⅱ)求AC與平面ADE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知a2,b2,c2成等差數(shù)列,則sinB最大值為(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{3}{4}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若a=5,b=7,c=8,則$\overrightarrow{AB}•\overrightarrow{AC}$等于44.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知f(x)是定義在D={x|x≠0}上的奇函數(shù),當(dāng)x>0時(shí),f(x)=x2-x,則當(dāng)x<0時(shí),f(x)=-x2-x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.A,B,C,D,E等5名同學(xué)坐成一排照相,要求學(xué)生A,B不能同時(shí)坐在兩旁,也不能相鄰而坐,則這5名同學(xué)坐成一排的不同坐法共有60種.(用數(shù)學(xué)作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知橢圓$C:\frac{x^2}{16}+\frac{y^2}{9}=1$的左、右焦點(diǎn)分別為F1、F2,過F2的直線交橢圓C于P、Q兩點(diǎn),若|F1P|+|F1Q|=10,則|PQ|等于( 。
A.8B.6C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知等比數(shù)列{an}中,a1=1,a4=8,則其前6項(xiàng)之和為63.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知橢圓的兩焦點(diǎn)坐標(biāo)分別是(-2,0)、(2,0),并且過點(diǎn)(2$\sqrt{3}$,$\sqrt{3}$),則該橢圓的標(biāo)準(zhǔn)方程是$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$.

查看答案和解析>>

同步練習(xí)冊(cè)答案