14.已知兩條不同的直線m,n和兩個不同的平面α,β,以下四個命題:
①若m∥α,n∥β,且α∥β,則m∥n;
②若m⊥α,n∥β,且α∥β,則m⊥n;
③若m∥α,n⊥β,且α⊥β,則m∥n;
④若m⊥α,n⊥β,且α⊥β,則m⊥n.
其中正確命題的個數(shù)是( 。
A.4B.3C.2D.1

分析 在①中,m與n平行或異面;在②中,由直線與平面垂直的性質(zhì)得m⊥n;在③中,m與n相交、平行或異面;在④中,由面面垂直和線面垂直的性質(zhì)得m⊥n.

解答 解:由兩條不同的直線m,n和兩個不同的平面α,β,知:
在①中,若m∥α,n∥β,且α∥β,則m與n平行或異面,故①錯誤;
在②中,若m⊥α,n∥β,且α∥β,則由直線與平面垂直的性質(zhì)得m⊥n,故②正確;
在③中,若m∥α,n⊥β,且α⊥β,則m與n相交、平行或異面,故③錯誤;
在④中,若m⊥α,n⊥β,且α⊥β,則由面面垂直和線面垂直的性質(zhì)得m⊥n,故④正確.
故選:C.

點(diǎn)評 本題考查命題真假的判斷,是中檔題,解題時要認(rèn)真審題,注意空間中線線、線面、面面間的位置關(guān)系的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.命題“空間兩直線a,b互相平行”成立的充分條件是( 。
A.直線a,b都平行于同一個平面B.直線a平行于直線b所在的平面
C.直線a,b都垂直于同一條直線D.直線a,b都垂直于同一個平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某校隨機(jī)抽取100名學(xué)生調(diào)查寒假期間學(xué)生平均每天的學(xué)習(xí)時間,被調(diào)查的學(xué)生每天用于學(xué)習(xí)的時間介于1小時和11小時之間,按學(xué)生的學(xué)習(xí)時間分成5組:第一組[1,3),第二組[3,5),第三組[5,7),第四組[7,9),第五組[9,11],繪制成如圖所示的頻率分布直方圖.
(Ⅰ)求學(xué)習(xí)時間在[7,9)的學(xué)生人數(shù);
(Ⅱ)現(xiàn)要從第三組、第四組中用分層抽樣的方法抽取6人,從這6人中隨機(jī)抽取2人交流學(xué)習(xí)心得,求這2人中至少有1人的學(xué)習(xí)時間在第四組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,直線l經(jīng)過F2且交橢圓C于A,B兩點(diǎn)(如圖),△ABF1的周長為4$\sqrt{2}$,原點(diǎn)O到直線l的最大距離為1.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過F2作弦AB的垂線交橢圓C于M,N兩點(diǎn),求四邊形AMBN面積最小時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=x2-ax,g(x)=|x-a|,其中a為實數(shù).
(I)若f(x)+g(x)是偶函數(shù),求實數(shù)a的值;
(Ⅱ)設(shè)t∈R,若?a∈[0,3],對?x∈[0,3],都有f(x)+l≥tg(x)成立,求實數(shù)t的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P為橢圓C上的任意一點(diǎn),若以F1,F(xiàn)2,P三點(diǎn)為頂點(diǎn)的三角形一定不可能為等腰鈍角三角形,則橢圓C的離心率的取值范圍是(0,$\frac{1}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若復(fù)數(shù)z滿足zi=1+i,則z的共軛復(fù)數(shù)是(  )
A.-1-iB.1+iC.-1+iD.1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.定義min{a,b}=$\left\{\begin{array}{l}{a,a≤b}\\{b,a>b}\end{array}\right.$,設(shè)f(x)=min{x2,$\frac{1}{x}$},則由函數(shù)f(x)的圖象與x軸、直線x=2所圍成的封閉圖形的面積為( 。
A.$\frac{7}{12}$B.$\frac{5}{12}$C.$\frac{1}{3}+ln2$D.$\frac{1}{6}+ln2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)數(shù)列{bn}滿足bn=2bn-1+n(n=2,3,…).
(Ⅰ)若{bn}是等差數(shù)列,求數(shù)列{bn}的通項公式;
(Ⅱ)若b1=1時,求數(shù)列{bn}的通項公式與前n項和公式.

查看答案和解析>>

同步練習(xí)冊答案