6.若復(fù)數(shù)z滿足zi=1+i,則z的共軛復(fù)數(shù)是( 。
A.-1-iB.1+iC.-1+iD.1-i

分析 求出復(fù)數(shù)z即可求解結(jié)果.

解答 解:復(fù)數(shù)z滿足zi=1+i,
z=$\frac{1+i}{i}$=$\frac{-1+i}{-1}$=1-i.
z的共軛復(fù)數(shù)是:1+i.
故選:B.

點評 本題考查復(fù)數(shù)的基本運(yùn)算,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某電視臺為調(diào)查市民對本臺某節(jié)目的喜愛是否與年齡有關(guān),隨機(jī)抽取了100名市民,其中是否喜歡該節(jié)目的人數(shù)如圖所示:
喜歡不喜歡合計
10歲至30歲ab60
30歲至50歲cd40
合計7525100
(1)寫出列表中a,b,c,d的值;
(2)判斷是否有99%的把握認(rèn)為喜歡該節(jié)目與年齡有關(guān),說明你的理由;
(3)現(xiàn)計劃在這次調(diào)查中按年齡段用分層抽樣的方法選取5名市民,并從中抽取2名幸運(yùn)市民,求2名幸運(yùn)市民中至少有一人在30-50歲之間的概率.
下面的臨界值表供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(a+c)(c+d)(d+b)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.橢圓E的中心在坐標(biāo)原點O,焦點在x軸上,離心率為$\frac{1}{2}$,點P(1,$\frac{3}{2}$)及點A,B在橢圓E上,且$\overrightarrow{PA}$+$\overrightarrow{PB}$=m$\overrightarrow{OP}$(m∈R).
(1)求橢圓E的方程及直線AB的斜率;
(2)當(dāng)△PAB的面積取得最大時,求△PAB的重心坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知兩條不同的直線m,n和兩個不同的平面α,β,以下四個命題:
①若m∥α,n∥β,且α∥β,則m∥n;
②若m⊥α,n∥β,且α∥β,則m⊥n;
③若m∥α,n⊥β,且α⊥β,則m∥n;
④若m⊥α,n⊥β,且α⊥β,則m⊥n.
其中正確命題的個數(shù)是( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若m=6,n=4,按照如圖所示的程序框圖運(yùn)行后,輸出的結(jié)果是( 。
A.$\frac{1}{100}$B.100C.10D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某電子商務(wù)公司隨機(jī)抽取l000名網(wǎng)絡(luò)購物者進(jìn)行調(diào)查,這1000名購物者2015年網(wǎng)上購物金額(單位:萬元)均在區(qū)間[0.3,0.9]內(nèi),樣本分組為:[0.3,0.4),[0.4,0.5),
[0.5,0.6),[0.6,0.7),[0.7,0.8),[0.8,0.9],購物金額的頻率分布直方圖如下:電子商務(wù)公司決定給購物者發(fā)放優(yōu)惠券,其金額(單位:元)與購物金額關(guān)系如下:
購物金額分組[0.3,0.5)[0.5,0.6)[0.6,0.8)[0.8,0.9]
發(fā)放金額50100150200
(I)求這1000名購物者獲得優(yōu)惠券金額的平均數(shù);
(Ⅱ)以這1000名購物者購物金額落在相應(yīng)區(qū)間的頻率作為概率,求一個購物者獲得優(yōu)惠券金額不少于150元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知x,y滿足約束條件$\left\{\begin{array}{l}x-y≥0\\ ax+y-3≤0\\ y≥0\end{array}\right.$,(其中a>0),若z=x+y的最大值為1,則a=(  )
A.l..B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=|x-10|-|x-25|,且關(guān)于x的不等式f(x)<10a+10(a∈R)的解集為R.
(1)求實數(shù)a的取值范圍;
(2)求2a+$\frac{27}{{a}^{2}}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知點A(-1,8)、B(2,4).則|$\overrightarrow{AB}$|=5.

查看答案和解析>>

同步練習(xí)冊答案