【題目】在獨立性檢驗中,統(tǒng)計量有三個臨界值:2.706,3.841和6.635.當(dāng)時,有90%的把握說明兩個事件有關(guān);當(dāng)時,有95%的把握說明兩個事件有關(guān),當(dāng)時,有99%的把握說明兩個事件有關(guān),當(dāng)時,認為兩個事件無關(guān).在一項打鼾與心臟病的調(diào)查中,共調(diào)查了2000人,經(jīng)計算.根據(jù)這一數(shù)據(jù)分析,認為打鼾與患心臟病之間( )

A. 有95%的把握認為兩者有關(guān) B. 約95%的打鼾者患心臟病

C. 有99%的把握認為兩者有關(guān) D. 約99%的打鼾者患心臟病

【答案】C

【解析】分析:是一個獨立性檢驗理論分析題,根據(jù)K2的值,同所給的臨界值表中進行比較,可以得到有99%的把握認為打鼾與心臟病有關(guān).

詳解:計算得K2=20.87.

有20.87>6.635,

當(dāng)K26.635時,有99%的把握說明兩個事件有關(guān),

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在海岸A處,發(fā)現(xiàn)北偏東方向,距離A n mileB處有一艘走私船,在A處北偏西方向,距離A2 n mileC處有一艘緝私艇奉命以n mile / h的速度追截走私船,此時,走私船正以10 n mile / h的速度從B處向北偏東方向逃竄,問緝私艇沿什么方向行駛才能最快追上走私船?并求出所需時間。(本題解題過程中請不要使用計算器,以保證數(shù)據(jù)的相對準確和計算的方便)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在凸四邊形中,,則四邊形的面積最大值為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fxgx)分別是定義在R上的偶函數(shù)和奇函數(shù),且fx+gx=23x

1)證明:fx-gx=23-x,并求函數(shù)fx),gx)的解析式;

2)解關(guān)于x不等式:gx2+2x+gx-4)>0

3)若對任意xR,不等式f2x)≥mfx-4恒成立,求實數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為6的等邊三角形各切去一個全等的四邊形,再沿虛線折起,做成一個無蓋的正三棱柱形的容器.

(1)若這個容器的底面邊長為,容積為,寫出關(guān)于的函數(shù)關(guān)系式并注明定義域;

(2)求這個容器容積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)開設(shè)甲、乙、丙三門選修課,學(xué)生是否選修哪門課互不影響,已知某學(xué)生只選修甲的概率為0.08,只選修甲和乙的概率是0.12,至少選修一門的概率是0.88,用表示該學(xué)生選修的課程門數(shù)和沒有選修的課程門數(shù)的乘積.

1)記函數(shù)上的偶函數(shù)為事件,求事件的概率;

2)求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)內(nèi)有一塊以為圓心半徑為20米的圓形區(qū)域.廣場,為豐富市民的業(yè)余文化生活,現(xiàn)提出如下設(shè)計方案:如圖,在圓形區(qū)域內(nèi)搭建露天舞臺,舞臺為扇形區(qū)域,其中兩個端點,分別在圓周上;觀眾席為梯形內(nèi)且在圓外的區(qū)域,其中,且,在點的同側(cè).為保證視聽效果,要求觀眾席內(nèi)每一個觀眾到舞臺處的距離都不超過60米.設(shè).

(1)求的長(用表示);

(2)對于任意,上述設(shè)計方案是否均能符合要求?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣a|﹣ x,(a>0). (Ⅰ)若a=3,解關(guān)于x的不等式f(x)<0;
(Ⅱ)若對于任意的實數(shù)x,不等式f(x)﹣f(x+a)<a2+ 恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y2=2px(p>0)上一點P(3,t)到其焦點的距離為4.
(1)求p的值;
(2)過點Q(1,0)作兩條直線l1 , l2與拋物線分別交于點A、B和C、D,點M,N分別是線段AB和CD的中點,設(shè)直線l1 , l2的斜率分別為k1 , k2 , 若k1+k2=3,求證:直線MN過定點.

查看答案和解析>>

同步練習(xí)冊答案