【題目】已知函數(shù)fxgx)分別是定義在R上的偶函數(shù)和奇函數(shù),且fx+gx=23x

1)證明:fx-gx=23-x,并求函數(shù)fx),gx)的解析式;

2)解關(guān)于x不等式:gx2+2x+gx-4)>0;

3)若對任意xR,不等式f2x)≥mfx-4恒成立,求實(shí)數(shù)m的最大值.

【答案】(1)詳見解析;(2)(-∞,-4)∪(1,+∞);(3)3.

【解析】

1)根據(jù)偶函數(shù)和奇函數(shù)的定義,令-x代替x,即可求出fx-gx)的解析式,再利用方程組求出fx)、gx)的解析式;(2)根據(jù)gx)是定義域R上的增函數(shù),把不等式化為x2+2x4-x,求出解集即可;(3)根據(jù)fx)≥2把不等式化為,再構(gòu)造函數(shù),求出函數(shù)的最小值,即可求得實(shí)數(shù)m的最大值.

1)證明:函數(shù)fx)、gx)分別是定義在R上的偶函數(shù)和奇函數(shù),

f-x=fx),g-x=-gx);

fx+gx=23x,①

f-x+g-x=23-x,

fx-gx=23-x,②

由①②求得函數(shù)fx=3x+3-x,

gx=3x-3-x

2)解:gx=3x-3-x是定義域R上的單調(diào)增函數(shù),

所以不等式gx2+2x+gx-4)>0可化為gx2+2x)>-gx-4=g4-x),

x2+2x4-x,整理得x2+3x-40,解得x-4x1,

所以不等式的解集為(-∞,-4)∪(1,+∞);

3)解:對任意xR,函數(shù)fx=3x+3-x≥2=2,當(dāng)且僅當(dāng)x=0時(shí)取“=”;

所以不等式f2x)≥mfx-4化為32x+3-2xm3x+3-x-4,

m=

設(shè)t=3x+3-x,則t≥2,

所以函數(shù)gt=t+在區(qū)間[2,+∞)上單調(diào)遞增,

gtmin=g2=2+1=3,即m3,

所以實(shí)數(shù)m的最大值為3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與函數(shù)相鄰兩支曲線的交點(diǎn)的橫坐標(biāo)分別為,,且有,假設(shè)函數(shù)的兩個(gè)不同的零點(diǎn)分別為,,若在區(qū)間內(nèi)存在兩個(gè)不同的實(shí)數(shù),,與,調(diào)整順序后,構(gòu)成等差數(shù)列,則的值為( )

A. B.

C. 或不存在D. 或不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若集合A={x|log4x≤ },B={x|(x+3)( x﹣1)≥0},則A∩(RB)=(
A.(0,1]
B.(0,1)
C.[1,2]
D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù)

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),正數(shù)滿足,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐的外接球的表面積為25π,該三棱錐的三視圖如圖所示,三個(gè)視圖的外輪廓都是直角三角形,則其側(cè)視圖面積的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圓N:x2+(y+ 2=36,P是圓N上的點(diǎn),點(diǎn)Q在線段NP上,且有點(diǎn)D(0, )和DP上的點(diǎn)M,滿足 =2 , =0.
(1)當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)Q的軌跡方程;
(2)若斜率為 的直線l與(1)中所求Q的軌跡交于不同兩點(diǎn)A、B,又點(diǎn)C( ,2),求△ABC面積最大值時(shí)對應(yīng)的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在獨(dú)立性檢驗(yàn)中,統(tǒng)計(jì)量有三個(gè)臨界值:2.706,3.841和6.635.當(dāng)時(shí),有90%的把握說明兩個(gè)事件有關(guān);當(dāng)時(shí),有95%的把握說明兩個(gè)事件有關(guān),當(dāng)時(shí),有99%的把握說明兩個(gè)事件有關(guān),當(dāng)時(shí),認(rèn)為兩個(gè)事件無關(guān).在一項(xiàng)打鼾與心臟病的調(diào)查中,共調(diào)查了2000人,經(jīng)計(jì)算.根據(jù)這一數(shù)據(jù)分析,認(rèn)為打鼾與患心臟病之間( )

A. 有95%的把握認(rèn)為兩者有關(guān) B. 約95%的打鼾者患心臟病

C. 有99%的把握認(rèn)為兩者有關(guān) D. 約99%的打鼾者患心臟病

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)高等數(shù)學(xué)老師這學(xué)期分別用兩種不同的教學(xué)方式試驗(yàn)甲、乙兩個(gè)大一新班(人數(shù)均為60人,入學(xué)數(shù)學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同;勤奮程度和自覺性都一樣),F(xiàn)隨機(jī)抽取甲、乙兩班各20名的高等數(shù)學(xué)期末考試成績,得到莖葉圖:

)依莖葉圖判斷哪個(gè)班的平均分高?

)現(xiàn)班高等數(shù)學(xué)成績不得低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué),求成績?yōu)?/span>86分的同學(xué)至少有一個(gè)被抽中的概率;

)學(xué)校規(guī)定:成績不低于85分的為優(yōu)秀,請?zhí)顚懴旅娴?/span>列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.025的前提下認(rèn)為成績優(yōu)秀與教學(xué)方式有關(guān)?

甲班

乙班

合計(jì)

優(yōu)秀

不優(yōu)秀

合計(jì)

下面臨界值表僅供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=alnx+ , g(x)=x+lnx,其中a>0,且x∈(0,+∞).
(1)若a=1,求f(x)的最小值;
(2)若對任意x≥1,不等式f(x)≤g(x)恒成立,求實(shí)數(shù)a的取值范圍;

查看答案和解析>>

同步練習(xí)冊答案