8.設(shè)f(x)是定義在R上的函數(shù),則“f (x)不是奇函數(shù)”的充要條件是( 。
A.?x∈R,f(-x)≠-f(x)B.?x∈R,f(-x)≠f(x)C.?x0∈R,f(-x0)≠-f(x0D.?x0∈R,f(-x0)≠f(x0

分析 根據(jù)充分條件和必要條件的定義,進(jìn)行判斷即可.

解答 解:f (x)不是奇函數(shù),則等價(jià)為?x∈R,f(-x)=-f(x)不成立,
即?x0∈R,f(-x0)≠-f(x0),
故選:C.

點(diǎn)評 本題主要考查充分條件和必要條件的判斷,根據(jù)含有量詞的命題的否定進(jìn)行判斷是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=$\frac{Asin(\frac{π}{2}+2x)•cos(\frac{π}{2}-x)•tan(-x+3π)}{sin(7π-x)•tan(8π-x)}$過點(diǎn)P(0,2).
(1)求f(x)的解析式;
(2)已知f($\frac{α}{2}$+$\frac{π}{12}$)=$\frac{10}{13}$,求cos($\frac{5π}{6}$-α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知角θ的終邊經(jīng)過點(diǎn)P(m+4,3m-3).
(I)若cosθ≥0,且sinθ<0,求實(shí)數(shù)m的取值范圍;
(Ⅱ)若$\frac{sinθ-3cosθ}{cosθ+sinθ}$=-$\frac{5}{3}$,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{log}_{2}x,x≥1}\\{x^2+m^2,x<1}\end{array}\right.$,若f(f(-1))=2,在實(shí)數(shù)m的值為( 。
A.1B.1或-1C.$\sqrt{3}$D.$\sqrt{3}$或-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.y=loga(logax)的定義域是a>1,為(1,+∞),0<a<1,定義域?yàn)椋?,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知z=$\frac{a-i}{1-i}$,a>0,復(fù)數(shù)ω=z(z+i)的虛部減去它的實(shí)部所得的差為$\frac{3}{2}$,求實(shí)數(shù)a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知U=R,關(guān)于x的不等式ax2+2x+b>0(a≠0)的解集是$\left\{{x\left|{x≠-\frac{1}{a},x∈R}\right.}\right\}$,且a>b,則$t=\frac{{{a^2}+{b^2}}}{a-b}$,實(shí)數(shù)t的取值集合為A.集合B={m||x+1|-|x-3|≤m2-3m,x∈R恒成立},則A∩(∁UB)=$[{2\sqrt{2},4})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.復(fù)數(shù)$\frac{1-i}{1-2i}$的虛部為( 。
A.$\frac{1}{5}$B.$\frac{3}{5}$C.-$\frac{1}{5}$D.-$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.將一骰子連續(xù)拋擲兩次,至少有一次向上的點(diǎn)數(shù)為1的概率是$\frac{11}{36}$.

查看答案和解析>>

同步練習(xí)冊答案