18.設(shè)函數(shù)f(x)=$\frac{Asin(\frac{π}{2}+2x)•cos(\frac{π}{2}-x)•tan(-x+3π)}{sin(7π-x)•tan(8π-x)}$過(guò)點(diǎn)P(0,2).
(1)求f(x)的解析式;
(2)已知f($\frac{α}{2}$+$\frac{π}{12}$)=$\frac{10}{13}$,求cos($\frac{5π}{6}$-α)的值.

分析 (1)直接利用誘導(dǎo)公式化簡(jiǎn)函數(shù)的解析式即可.
(2)通過(guò)函數(shù)的解析式,利用已知條件以及誘導(dǎo)公式化簡(jiǎn)求解即可.

解答 解:(1)函數(shù)f(x)=$\frac{Asin(\frac{π}{2}+2x)•cos(\frac{π}{2}-x)•tan(-x+3π)}{sin(7π-x)•tan(8π-x)}$=$\frac{Acos2xsinxtanx}{sinxtanx}$=Acos2x.
函數(shù)f(x)=$\frac{Asin(\frac{π}{2}+2x)•cos(\frac{π}{2}-x)•tan(-x+3π)}{sin(7π-x)•tan(8π-x)}$過(guò)點(diǎn)P(0,2).
可得A=2.
f(x)的解析式:f(x)=2cos2x.
(2)f($\frac{α}{2}$+$\frac{π}{12}$)=$\frac{10}{13}$,可得:2cos(α+$\frac{π}{6}$)=$\frac{10}{13}$,
所以cos(α+$\frac{π}{6}$)=$\frac{5}{13}$.
cos($\frac{5π}{6}$-α)=-cos(π-($\frac{5π}{6}$-α))=-cos(α+$\frac{π}{6}$)=-$\frac{5}{13}$.

點(diǎn)評(píng) 本題考查誘導(dǎo)公式以及三角函數(shù)的化簡(jiǎn)求值,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若函數(shù)f(x)是冪函數(shù),則f(1)=1,若滿足f(4)=8f(2),則$f(\frac{1}{3})$=$\frac{1}{27}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知⊙O的方程為x2+y2=4.
(1)若P為圓O上第一象限內(nèi)的動(dòng)點(diǎn),過(guò)點(diǎn)P的切線與x軸和y軸的正方向分別相交于A,B兩點(diǎn),設(shè)$\overrightarrow{OM}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,求|$\overrightarrow{OM}$|的最小值;
(2)設(shè)C為圓O上的一點(diǎn),D,E是圓O上關(guān)于x軸對(duì)稱(chēng)的兩點(diǎn),若直線CD和直線CE與x軸交點(diǎn)的橫坐標(biāo)分別為s,t,求證:st為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知x=$\frac{π}{6}$是函數(shù)f(x)=asin x+bcosx的對(duì)稱(chēng)軸,則函數(shù)g(x)=bsinx-acosx的一條對(duì)稱(chēng)軸是( 。
A.x=$\frac{π}{3}$B.x=$\frac{2π}{3}$C.x=$\frac{5π}{4}$D.x=$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知f(x)=(x-1)2,g(x)=4(x-1),數(shù)列{an}滿足:a1=2,an≠1,且(an-an+1)g(an)=f(an)(n∈N*)(1)證明:數(shù)列{an-1}是等比數(shù)列;
(2)若數(shù)列{bn}滿足bn=$\frac{2n-1}{{4}^{n-1}({a}_{n}-1)}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知P={x|x2-2x-15≤0},S={x|2-m≤x≤3+m},
(1)是否存在實(shí)數(shù)m,使x∈P是x∈S的充要條件,若存在,求出m的取值范圍.
(2)是否存在實(shí)數(shù)m,使x∈P是x∈S的必要條件,若存在,求出m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知x+$\frac{1}{x}$=1.則x1996+$\frac{1}{{x}^{1996}}$的值為(  )
A.-1B.1C.-iD.i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知等比數(shù)列{an}中,a1+a3=10,a4+a6=$\frac{5}{4}$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求證:數(shù)列{lgan}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)f(x)是定義在R上的函數(shù),則“f (x)不是奇函數(shù)”的充要條件是(  )
A.?x∈R,f(-x)≠-f(x)B.?x∈R,f(-x)≠f(x)C.?x0∈R,f(-x0)≠-f(x0D.?x0∈R,f(-x0)≠f(x0

查看答案和解析>>

同步練習(xí)冊(cè)答案