已知偶函數(shù)f(x)=x2+ax+b的兩零點(diǎn)相差1,則實(shí)數(shù)a=
 
,b=
 
考點(diǎn):函數(shù)的零點(diǎn)
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:若函數(shù)為偶函數(shù),則f(x)=f(-x),據(jù)此即可解得a的值,再利用函數(shù)f(x)=x2+ax+b的兩零點(diǎn)相差1,求出b.
解答: 解:∵函數(shù)f(x)=x2+ax+b,x∈R為偶函數(shù),
∴f(x)=f(-x),
∴x2+ax+b=x2-ax+b,
解得a=0,
∴f(x)=x2+b的兩零點(diǎn)為±
-b
,
∵偶函數(shù)f(x)=x2+ax+b的兩零點(diǎn)相差1,
∴2
-b
=1,
∴b=-
1
4

故答案為:0,-
1
4
點(diǎn)評(píng):本題主要考查偶函數(shù)的知識(shí)點(diǎn),熟練掌握偶函數(shù)的定義f(x)=f(-x),此題難度較小.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某班從6名班干部(其中男生4人,女生2人)中選三人參加學(xué)校組織的課外活動(dòng).若“男生甲被選中”為事件A,“女生乙被選中”為事件B,則P(B|A)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cosx•sin(x-
π
6
).
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若f(
α
2
)=
1
4
,(
3
<α<
3
),求
cos(α+
2
)
tan(π+α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=(x-k)2+k(k∈R)
(1)證明:拋物線y=f(x)與直線y=x始終有2個(gè)不同的交點(diǎn)A,B,且線段AB的長為定值;
(2)設(shè)F(x)=
f(x)(f(x)>x)
x(f(x)≤x)
,存在實(shí)數(shù)m,使得m≤F(x)≤m+1對(duì)x∈[2,3]恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù) f(x)=3x+x-5,則函數(shù) f(x)的零點(diǎn)一定在區(qū)間( 。
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

可導(dǎo)函數(shù)在閉區(qū)間的最大值必在(  )取得.
A、極值點(diǎn)或區(qū)間端點(diǎn)
B、導(dǎo)數(shù)為0的點(diǎn)
C、極值點(diǎn)
D、區(qū)間端點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)為奇函數(shù),x>0時(shí),f(x)=sin2x+cos2x,則x<0時(shí)f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tan(α+β)=1,tan(α-
π
3
)=
1
3
,則tan(β+
π
3
)的值為( 。
A、
2
3
B、
1
2
C、
3
4
D、
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算下列定積分:
(1)
1
-2
(
1
2
x+1)dx
;                    (2)
0
-1
xdx

(3)
2
1
(1-x)dx;                     (4)
0
sinxdx.

查看答案和解析>>

同步練習(xí)冊答案