6.某城市理論預(yù)測(cè)2007年到2011年人口總數(shù)與年份的關(guān)系如表所示
年份2007+x(年)01234
人口數(shù)y(十萬(wàn))5781119
(1)請(qǐng)根據(jù)表提供的數(shù)據(jù),求最小二乘法求出y關(guān)于x的線性回歸方程;
(2)據(jù)此估計(jì)2012年該城市人口總數(shù).
參考公式:$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x}\overline y}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$$,\hat a=\overline y-\hat b\overline x$.

分析 (1)先求出年份2007+x和人口數(shù)y的平均值,即得到樣本中心點(diǎn),利用最小二乘法得到線性回歸方程的系數(shù),根據(jù)樣本中心點(diǎn)在線性回歸直線上,得到a的值,得到線性回歸方程;
(2)當(dāng)x=5代入回歸直線方程,即可求得$\hat y=19.6$.

解答 解:(1)∵$\overline x=2,\overline y=10$,…2分
$\sum_{i=1}^5{{x_i}{y_i}}=0×5+1×7+2×8+3×11+4×19=132$,$\sum_{i=1}^5{x_i^2}={0^2}+{1^2}+{2^2}+{3^2}+{4^2}=30$…4分
∴$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline{xy}}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}=3.2,\hat a=\overline y-\hat b\overline x=3.6$…6分
故y關(guān)于x的線性回歸方程為$\hat y=3.2x+3.6$;…8分
(2)當(dāng)x=5時(shí),$\hat y=3.2*5+3.6$,即$\hat y=19.6$…10分
據(jù)此估計(jì)2012年該城市人口總數(shù)約為196萬(wàn)…12分

點(diǎn)評(píng) 本題考查采用最小二乘法求線性回歸方程及線性回歸方程的簡(jiǎn)單應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知x≥$\frac{5}{2}$,求f(x)=$\frac{{x}^{2}-4x+5}{2x-4}$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖所示,在四棱錐P-ABCD中,PA⊥平面ABCD,PA=AD,底面ABCD為正方形,E為DP的中點(diǎn),AF⊥PC于F.
(Ⅰ)求證:PC⊥平面AEF;
(Ⅱ)求二面角B-AC-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,矩形ABCD中,AB=1,BC=2,半圓O以BC為直徑,平面ABCD垂直于半圓O所在的平面,P為半圓周上任意一點(diǎn)(與B、C不重合).
(1)求證:平面PAC⊥平面PAB;
(2)若P為半圓周中點(diǎn),求此時(shí)二面角P-AC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,等邊三角形PAB所在的平面與平行四邊形ABCD所在的平面垂直,E是線段BC中點(diǎn),∠ABC=60°,BC=2AB=2.
(Ⅰ)在線段PA上確定一點(diǎn)F,使得EF∥平面PCD,并說(shuō)明理由;
(Ⅱ)求二面角P-CD-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.一個(gè)幾何體的三視圖如圖所示,其中正視圖與側(cè)視圖都是斜邊長(zhǎng)為2的直角三角形,俯視圖是半徑為1,圓心角為$\frac{π}{2}$的扇形,則該幾何體的表面積為( 。
A.$\frac{3π}{4}$+$\sqrt{3}$B.$\frac{π}{2}$+$\sqrt{3}$C.$\frac{{\sqrt{3}π}}{12}$D.$\frac{{\sqrt{3}π}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若對(duì)任意實(shí)數(shù)x使得不等式|x-a|-|x+2|≤3恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.[-1,5]B.[-2,4]C.[-1,1]D.[-5,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.如表是某廠1~4月份用水量(單位:百噸)的一組數(shù)據(jù):
月份x1234
用水量y4.5a32.5
由散點(diǎn)圖可知,用水量y與月份x之間有較好的線性相關(guān)關(guān)系,其線性回歸直線方程是$\widehat{y}$=-0.7x+5.25,則a等于4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知點(diǎn)P(-1,4)及圓C:(x-2)2+(y-3)2=1.則下列判斷正確的序號(hào)為②③.
①點(diǎn)P在圓C內(nèi)部;
②過(guò)點(diǎn)P做直線l,若l將圓C平分,則l的方程為x+3y-11=0;
③過(guò)點(diǎn)P做直線l與圓C相切,則l的方程為y-4=0或3x+4y-13=0;
④一束光線從點(diǎn)P出發(fā),經(jīng)x軸反射到圓C上的最短路程為$\sqrt{58}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案