已知變量x,y滿足數(shù)學(xué)公式,則2x+y的最大值為


  1. A.
    數(shù)學(xué)公式
  2. B.
    8
  3. C.
    16
  4. D.
    64
B
分析:先根據(jù)約束條件畫(huà)出可行域,欲求z=2x+y的最大值,即要求z1=x+y的最大值,再利用幾何意義求最值,分析可得z1=x+y表示直線在y軸上的截距,只需求出可行域直線在y軸上的截距最大值即可.
解答:解:作圖
易知可行域?yàn)橐粋(gè)三角形,
驗(yàn)證知在點(diǎn)A(1,2)時(shí),
z1=x+y取得最大值3,
∴z最大是23=8,
故選B.
點(diǎn)評(píng):本題主要考查了簡(jiǎn)單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎(chǔ)題.目標(biāo)函數(shù)有唯一最優(yōu)解是我們最常見(jiàn)的問(wèn)題,這類(lèi)問(wèn)題一般要分三步:畫(huà)出可行域、求出關(guān)鍵點(diǎn)、定出最優(yōu)解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知變量x,y滿足
2x-y≤0
x-3y+5≥0
x≥0
,則z=x-y+5的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知變量x,y滿足約束條件
2x-y≤0
x-2y+3≥0
x≥0
,則目標(biāo)函數(shù)z=x+y的最大值為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知變量x,y滿足
x-4y+3≤0
3x+5y≤25
x≥1
,設(shè)目標(biāo)函數(shù)z=2x+y,若存在不同的三點(diǎn)(x,y)使目標(biāo)函數(shù)z的值構(gòu)成等比數(shù)列,則以下不可能成為公比的數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知變量x、y滿足條件
x≥1
x-y≤0
x+2y-9≤0
則z=x+y的最大值是
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知變量x,y滿足約束條件
x+y≤1
2x+y≤2
x≥0,y≥0
,則目標(biāo)函數(shù)z=
1
2
x+y
的最大值為
1
1

查看答案和解析>>

同步練習(xí)冊(cè)答案