分析 (1)由“f(x)在區(qū)間[0,1]上是增函數(shù),在區(qū)間(-∞,0),(1,+∞)上是減函數(shù)”,則有f'(0)=f'(1)=0,再由f′($\frac{1}{2}$)=$\frac{3}{2}$求解;
(2)首先將“f(x)≤x,x∈[0,m]成立”轉(zhuǎn)化為“x(2x-1)(x-1)≥0,x∈[0,m]成立”求解即可.
解答 解:(1)f'(x)=3ax2+2bx+c,由已知f'(0)=f'(1)=0,
即 $\left\{\begin{array}{l}{c=0}\\{3a+2b+c=0}\end{array}\right.$,解得 $\left\{\begin{array}{l}{c=0}\\{b=-\frac{3}{2}a}\end{array}\right.$,
∴f'(x)=3ax2-3ax,
∴f′($\frac{1}{2}$)=$\frac{3a}{4}$-$\frac{3a}{2}$=$\frac{3}{2}$,
∴a=-2,
∴f(x)=-2x3+3x2.
(2)由f(x)≤x,即-2x3+3x2-x≤0,
∴x(2x-1)(x-1)≥0,
∴0≤x≤$\frac{1}{2}$或x≥1.
又f(x)≤x在區(qū)間[0,m]上恒成立,
∴0<m≤$\frac{1}{2}$.
點(diǎn)評 本題主要考查利用函數(shù)的極值點(diǎn)和導(dǎo)數(shù)值來求函數(shù)解析式及不等式恒成立問題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4π+16+4$\sqrt{3}$ | B. | 5π+16+4$\sqrt{3}$ | C. | 4π+16+2$\sqrt{3}$ | D. | 5π+16+2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 84π | B. | 72π | C. | 60π | D. | 48π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{20π}{3}$ | B. | 8π | C. | 9π | D. | $\frac{19π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 16 | B. | 8$\sqrt{6}$+6$\sqrt{2}$ | C. | 16$\sqrt{6}$ | D. | 16+6$\sqrt{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 20π-8+4$\sqrt{14}$ | B. | 20π+2$\sqrt{14}$ | C. | 20π-8+2$\sqrt{14}$ | D. | 20π+4$\sqrt{14}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 20072 | D. | 2007 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com