7.如圖為三棱錐S-ABC的三視圖,其表面積為( 。
A.16B.8$\sqrt{6}$+6$\sqrt{2}$C.16$\sqrt{6}$D.16+6$\sqrt{6}$

分析 該三棱錐為長方體切去四個小三棱錐得到的,三棱錐的三條邊長分別為$2\sqrt{5},2\sqrt{5},4\sqrt{2}$,即可球心三棱錐的表面積

解答 解:由三視圖可知該三棱錐為邊長為2,4,4的長方體切去四個小棱錐得到的幾何體.
三棱錐的三條邊長分別為$2\sqrt{5},2\sqrt{5},4\sqrt{2}$,
∴表面積為4×$\frac{1}{2}×4\sqrt{2}×\sqrt{(2\sqrt{5})^{2}-(2\sqrt{2})^{2}}$=16$\sqrt{6}$.
故選:C.

點(diǎn)評 本題考查了由三視圖求表面積,根據(jù)三視圖得出三棱錐的三條邊長是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖,一個空間幾何體的主視圖和左視圖都是邊長為1的正方形,俯視圖是一個圓,那么這個幾何體的側(cè)面積為(  )
A.πB.$\frac{π}{2}$C.$\frac{π}{4}$D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在等腰梯形ABCD中,AD∥BC,AD=$\frac{1}{2}$BC,∠ABC=60°,N是BC的中點(diǎn),將ABCD繞AB旋轉(zhuǎn)90°,得到梯形ABC′D′.
(1)求證C′N∥平面ADD′;
(2)求二面角A-C′N-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,網(wǎng)格上小正方形的邊長為1,粗線畫出的是某空間幾何體的三視圖,則該幾何體的表面積為( 。
A.12+4$\sqrt{2}$+2$\sqrt{13}$B.12+8$\sqrt{2}$+2$\sqrt{13}$C.12+4$\sqrt{2}$+2$\sqrt{26}$D.12+8$\sqrt{2}$+2$\sqrt{26}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知f(x)=ax3+bx2+cx在區(qū)間[0,1]上是增函數(shù),在區(qū)間(-∞,0]和[1,+∞)上是減函數(shù),且f′($\frac{1}{2}$)=$\frac{3}{2}$
(1)求函數(shù)f(x)的解析式;
(2)若在區(qū)間[0,m](m>0)上恒有f(x)≤x,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)=$\left\{\begin{array}{l}|{lnx}|,({0<x≤{e^2}})\\{e^2}+2-x,({x>{e^2}})\end{array}$,存在x1<x2<x3,f(x1)=f(x2)=f(x3),則$\frac{{f({x_3})}}{{{x_1}{x_2}^2}}$的最大值為( 。
A.$\frac{1}{{2\sqrt{e}}}$B.$\frac{1}{{\sqrt{e}}}$C.$\frac{1}{e}$D.$\frac{1}{e^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某幾何體的三視圖如圖,則該幾何體的體積為( 。
A.80B.90C.100D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知點(diǎn)A($\frac{{\sqrt{3}}}{2}$,$\frac{1}{2}$),將OA繞坐標(biāo)原點(diǎn)O逆時針旋轉(zhuǎn)$\frac{π}{2}$至OB,則點(diǎn)B的坐標(biāo)為( 。
A.(-$\frac{1}{2}$,$\frac{{\sqrt{3}}}{2}$)B.($\frac{1}{2}$,-$\frac{{\sqrt{3}}}{2}$)C.(-$\frac{{\sqrt{3}}}{2}$,$\frac{1}{2}$)D.($\frac{{\sqrt{3}}}{2}$,-$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.復(fù)數(shù)z=$\frac{2i}{1+i}$(i為虛數(shù)單位)在復(fù)平面上對應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊答案