分析 (1)設(shè)出等差數(shù)列的公差d,由已知列式求得首項和公差,代入等差數(shù)列的通項公式得答案;
(2)寫出等差數(shù)列的前n項和,利用二次函數(shù)可得當n=2時,Sn的最小值為-4.
解答 解:(1)設(shè)等差數(shù)列{an}的公差為d,由已知得$\left\{\begin{array}{l}{a_1}=3\\ 11({a_1}+4d)=5({a_1}+7d)\end{array}\right.$,
解得:$\left\{\begin{array}{l}{{a}_{1}=-3}\\{d=2}\end{array}\right.$,
∴an=-3+2(n-1)=2n-5;
(2)${S}_{n}=\frac{{a}_{1}+{a}_{n}}{2}n={n}^{2}-4n$,
當n=2時,Sn的最小值為-4.
點評 本題考查等差數(shù)列的通項公式,考查了等差數(shù)列的前n項和,是基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | $\frac{9}{2}$ | D. | $\frac{11}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|-3<x<-1} | B. | {x|-3<x<0} | C. | {x|-1≤x<0} | D. | {x<-3} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1或-1 | B. | 0或1或-1 | C. | -1 | D. | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com