9.已知函數(shù)f(x)=x2+bx的圖象在點A(1,f(1))處的切線的斜率為3,數(shù)列{$\frac{1}{f(n)}$}的前n項和為Sn,則S2016的值為( 。
A.$\frac{2013}{2014}$B.$\frac{2014}{2015}$C.$\frac{2015}{2016}$D.$\frac{2016}{2017}$

分析 由已知得f′(1)=2+b=3,從而b=1,進而$\frac{1}{f(n)}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,然后由裂項相消法求和可得.

解答 解:函數(shù)的導數(shù)f′(x)=2x+b,
∵點A(1,f(1))處的切線的斜率為3,
∴f′(1)=2+b=3,解得b=1.
∴f(x)=x2+x=x(x+1),
∴$\frac{1}{f(n)}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
∴S2016=(1-$\frac{1}{2}$)+($\frac{1}{2}-\frac{1}{3}$)+…+($\frac{1}{2015}$-$\frac{1}{2016}$)
=1-$\frac{1}{2016}$=$\frac{2015}{2016}$.
故選C.

點評 本題考查數(shù)列的求和,涉及導數(shù)和曲線某點切線的斜率以及裂項相消法求和,屬中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

19.設奇函數(shù)f(x)的定義域為R,且周期為5,若f(1)<-1,f(4)=loga2(a>0,且a≠1),則實數(shù)a的取值范圍是(1,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.給出下列5個命題,①由于零向量$\overrightarrow 0$方向不確定,故$\overrightarrow 0$不能與任意向量平行
②$\overrightarrow{AB}$與$\overrightarrow{CD}$是共線向量,則A.B.C.D四點共線
③平行四邊形ABCD中,一定有$\overrightarrow{AB}=\overrightarrow{DC}$
④若$\overrightarrow m=\overrightarrow n,\;\;\overrightarrow n=\overrightarrow k$,則$\overrightarrow m=\overrightarrow k$⑤若$\overrightarrow a$∥$\overrightarrow b$,$\overrightarrow b$∥$\overrightarrow c$,則$\overrightarrow a$∥$\overrightarrow c$
其中不正確的命題有( 。
A.2個B.3個C.4個D.5個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知$f(x)=\frac{x^3}{3}-x$,$g(x)=mx+\frac{1}{3}$,若對任意的x1∈[-1,2],總存在x2∈[-1,2],使得g(x1)=f(x2),則實數(shù)m的取值范圍是$[-\frac{1}{3},\frac{1}{6}]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.計算定積分$\int_{\frac{π}{6}}^{\frac{π}{2}}{cos3xdx}$=$-\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.(1)求復數(shù)z=1+cosα+isinα(π<α<2π)的模.
(2)如(m+n)-(m2-3m)i>-1,試求自然數(shù)m,n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.命題“?n∈N*,f(n)≤n”的否定形式是( 。
A.?n∈N*,f(n)>nB.?n∉N*,f(n)>nC.?n∈N*,f(n)>nD.?n∉N*,f(n)>n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.計算:i+i2+i3+…+i2010=-1+i.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知A(-1,2),B(0,-2),若點D在線段AB上,且2|${\overrightarrow{AD}}$|=3|${\overrightarrow{BD}}$|,則點D的坐標為$(-\frac{2}{5},-\frac{2}{5})$.

查看答案和解析>>

同步練習冊答案