求f(x)=
3
sinx+cosx對稱軸方程.
考點:兩角和與差的正弦函數(shù),正弦函數(shù)的對稱性
專題:計算題,三角函數(shù)的圖像與性質(zhì)
分析:化簡函數(shù)f(x)的解析式為f(x)=2sin(x+
π
6
),令x+
π
6
=kπ+
π
2
,k∈Z,可得 x=kπ+
π
3
,k∈Z就是函數(shù)的對稱軸,由此得出結(jié)論.
解答: 解:∵f(x)=
3
sinx+cosx=2sin(x+
π
6

∴令x+
π
6
=kπ+
π
2
,k∈Z,可解得:x=kπ+
π
3
,k∈Z,
故f(x)=
3
sinx+cosx對稱軸方程為x=kπ+
π
3
,k∈Z.
點評:本題主要考查三角函數(shù)的恒等變換,正弦函數(shù)的對稱性,化簡函數(shù)f(x)的解析式是解題的關(guān)鍵,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式組
x>0
y>0
4x+3y≤12

(1)畫出不等式組表示的平面區(qū)域;
(2)求不等式所表示的平面區(qū)域的面積
(3)求不等式所表示的平面區(qū)域的整點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式|x-2|≤m的解集為{x|-4≤x≤8},又已知a,b,c∈R,且a+2b+3c=m,求a2+4b2+9c2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個單峰函數(shù)y=f(x)的因素x的取值范圍是[20,30],用黃金分割法安排試點,x1,x2,x3,x4 …中,若x1<x2,x1,x3依次是好點,則x4=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y屬于實數(shù),求
x2+y2
+
(x-1)2+y2
+
x2+(y-1)2
+
(x-1)2+(y-1)2
最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知斜率為1的直線l過點(0,
5
4
),拋物線C:y2=2px(p>0)的頂點關(guān)于直線l的對稱點在該拋物線的準(zhǔn)線上,求拋物線C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

全集U=R,設(shè)集合A={x|-x2-2x+3≥0},B={x||x+1|>1},求:
(1)A∩B,A∪B;
(2)∁UA,∁UB;
(3)∁UA∩∁UB,∁UA∪∁UB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要得到函數(shù)y=cos(
x
2
-
π
4
)的圖象,只需將y=sin
x
2
的圖象
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在如圖的多面體中,AE⊥底面BEFC,AD∥EF∥BC,CF=BE=AD=EF=
1
2
BC=2,AE=2,G是BC的中點.
(1)求證:AB∥平面DEG;
(2)求證:EG⊥平面BDF;
(3)求此多面體ABCDEF的體積.

查看答案和解析>>

同步練習(xí)冊答案