分析 (1)由勾股定理的逆定理得AC⊥BC,由CC1⊥平面ABC得AC⊥CC1,故AC⊥平面BC1C,于是AC⊥BC1;
(2)設(shè)BC1與B1C的交點為E,連結(jié)DE,則由中位線定理得DE∥AC1,于是AC1∥平面CDB1;
(3)取AC中點M,連結(jié)DM,則DM⊥平面ACC1,故DM為棱錐D-AA1C1的高.
解答 (1)證明:∵底面三邊長AC=3,AB=5,BC=4,
∴AC⊥BC,
∵AA1⊥底面ABC,AA1∥CC1,
∴CC1⊥平面ABC,∵AC?平面ABC,
∴AC⊥CC1,又BC∩CC1=C,BC?平面BCC1B1,CC1?平面BCC1B1,
∴AC⊥平面BCC1B1,∵BC1?平面BCC1B1,
∴AC⊥BC1.
(2)證明:設(shè)CB1與C1B的交點為E,連接DE,
∵D是AB的中點,E是BC1的中點,
∴DE∥AC1,
∵DE?平面CDB1,AC1?平面CDB1,
∴AC1∥平面CDB1.
(3)解:取AC的中點M,連接DM,
∵D是AB的中點,∴DM∥BC且$DM=\frac{1}{2}BC=2$.
又∵BC⊥AC,BC⊥AA1,∴BC⊥平面ACC1A1,
∴DM⊥平面ACC1A1.
∵${S_{△A{A_1}{C_1}}}=\frac{1}{2}A{A_1}•{A_1}{C_1}=\frac{1}{2}×4×3=6$,
∴${V_{D-A{A_1}{C_1}}}=\frac{1}{3}DM•{S_{△A{A_1}{C_1}}}=\frac{1}{3}×2×6=4$.
點評 本題考查了線面垂直的判定與性質(zhì),線面平行的判定,棱錐的體積計算,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | ① | B. | ①③ | C. | ①② | D. | ②③ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
分數(shù)段 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
甲班頻數(shù) | 4 | 6 | 10 | 18 | 12 |
乙班頻數(shù) | 2 | 6 | 18 | 16 | 8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1或-3 | B. | -1或3 | C. | 1或3 | D. | -1或-3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
高校 | 相關(guān)人數(shù) | 抽取人數(shù) |
A | 54 | x |
B | 36 | 2 |
C | 72 | y |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 16 | B. | 8$\sqrt{5}$ | C. | 32 | D. | 16$\sqrt{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com