(本小題滿(mǎn)分12分)
如圖,菱形
ABCD與矩形
BDEF所在平面互相垂直,
.
(1)求證:
FC∥平面
AED;
(2)若
,當(dāng)二面角
為直二面角時(shí),求
k的值.
(1)根據(jù)面面平行的性質(zhì)定理來(lái)分析得到證明,關(guān)鍵是證明平面
FBC∥平面
EDA(2)
試題分析:(1)證明:
,
平面
FBC∥平面
EDA故
平面
(2)取
EF,
BD的中點(diǎn)
M,
N. 由于
AE=
AF=
CE=
CF所以
,且
。
∴
就是二面角
的平面角
連接
AC,當(dāng)
=90°即二面角
為直二面角時(shí),
,
即
點(diǎn)評(píng):解決立體幾何中的平行和垂直的證明,需要熟練的運(yùn)用線(xiàn)面平行和垂直 判定定理和性質(zhì)定理阿麗解答。而對(duì)于角的求解,通常就是利用定義作出角,然后結(jié)合三角形來(lái)得到結(jié)論,屬于中檔題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知斜三棱柱
的各棱長(zhǎng)均為2, 側(cè)棱
與底面
所成角為
,且側(cè)面
底面
.
(1)證明:點(diǎn)
在平面
上的射影
為
的中點(diǎn);
(2)求二面角
的大。
(3)求點(diǎn)
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本小題滿(mǎn)分10分)
如圖,在棱長(zhǎng)為3的正方體
中,
.
⑴求兩條異面直線(xiàn)
與
所成角的余弦值;
⑵求平面
與平面
所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本小題滿(mǎn)分13分)
如圖1,在等腰梯形
中,
,
,
,
為
上一點(diǎn),
,且
.將梯形
沿
折成直二面角
,如圖2所示.
(Ⅰ)求證:平面
平面
;
(Ⅱ)設(shè)點(diǎn)
關(guān)于點(diǎn)
的對(duì)稱(chēng)點(diǎn)為
,點(diǎn)
在
所在平面內(nèi),且直線(xiàn)
與平面
所成的角為
,試求出點(diǎn)
到點(diǎn)
的最短距離.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
若α、β是兩個(gè)不同的平面,m、n是兩條不同直線(xiàn),則下列命題不正確的是
A.α∥β,m⊥α,則m⊥β |
B.m∥n,m⊥α,則n⊥α |
C. n∥α,n⊥β,則α⊥β |
D.αβ=m,n與α、β所成的角相等,則m⊥n |
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本小題滿(mǎn)分14分)
如圖,在三棱錐P-ABC中,底面△ABC為等邊三角形,∠APC=90°,PB=AC=2PA=4,O為AC的中點(diǎn)。
(Ⅰ)求證:BO⊥PA;
(Ⅱ)判斷在線(xiàn)段AC上是否存在點(diǎn)Q(與點(diǎn)O不重合),使得△PQB為直角三角形?若存在,試找出一個(gè)點(diǎn)Q,并求
的值;若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本題10分)三棱柱
中,側(cè)棱
底面
,
,
,
(1)求異面直線(xiàn)
與
所成角的余弦值;
(2)求證:
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
如圖,
是邊長(zhǎng)為
的正方形,
平面
,
,
,
與平面
所成角為
.
(Ⅰ)求證:
平面
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)線(xiàn)段
上是否存在點(diǎn)
,使得
平面
?若存在,試確定點(diǎn)
的位置;若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
設(shè)
是兩條不同的直線(xiàn),
是三個(gè)不同的平面.給出下列四個(gè)命題:
①若
⊥
,
,則
;
②若
,則
;
③若
,則
;
④若
,則
.
其中正確命題的序號(hào)是( )
查看答案和解析>>