6.定義在實(shí)數(shù)集上的函數(shù)y=f(x)是偶函數(shù),當(dāng)x≥0時(shí),f(x)=-x2+4x.
(1)求f(x)在R上的表達(dá)式;
(2)求y=f(x)的最大值,并寫出f(x)在R上的單調(diào)區(qū)間(不必證明).

分析 (1)設(shè)x<0時(shí),則-x>0,利用f(x)=f(-x),以及當(dāng)x≥0時(shí),f(x)=-x2+4x,求得x<0時(shí)函數(shù)解析式,從而得出結(jié)論.
(2)根據(jù)函數(shù)的解析式求得y=f(x)的最大值,并寫出f(x)在R上的單調(diào)區(qū)間.

解答 解:(1)∵定義在實(shí)數(shù)集上的函數(shù)y=f(x)是偶函數(shù),
當(dāng)x≥0時(shí),f(x)=-x2+4x=-(x-2)2+4,
設(shè)x<0時(shí),則-x>0,
故f(x)=f(-x)=-(-x)2+4(-x)=-x2-4x=-(x+2)2,
綜上可得,f(x)=$\left\{\begin{array}{l}{{-x}^{2}+4x,x≥0}\\{{-x}^{2}-4x,x<0}\end{array}\right.$.
(2)根據(jù)函數(shù)的解析式可得,當(dāng)x=±2時(shí),y=f(x)取得最大值為4,
結(jié)合f(x)的圖象寫出f(x)在R上的單調(diào)增區(qū)間為(-∞,-2]、[0,2];
減區(qū)間為[-2,0]、[2,+∞).

點(diǎn)評(píng) 本題主要考查利用函數(shù)的奇偶性求函數(shù)的解析式,求函數(shù)的最值以及單調(diào)區(qū)間,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在平行四邊形ABCD中,AP⊥BD于P,AP=3,則$\overrightarrow{AP}$•$\overrightarrow{AC}$的值為( 。
A.3B.6C.9D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=2+t\\ y=3+t\end{array}$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線c1的極坐標(biāo)方程為:ρsin2θ-4cosθ=0(ρ≥0,0≤θ<2π),曲線C2的極坐標(biāo)方程為ρ2(4cos2θ-1)-3=0
(Ⅰ)求直線l與曲線C1交點(diǎn)的極坐標(biāo)的極徑;
(Ⅱ)設(shè)直線l與曲線C2交于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,A,B分別是橢圓的上頂點(diǎn)、右頂點(diǎn),原點(diǎn)O到直線AB的距離為$\frac{\sqrt{6}}{3}$.
(1)求E的方程;
(2)直線l1,l2的斜率均為$\frac{\sqrt{2}}{2}$,直線l1與E相切于點(diǎn)M(點(diǎn)M在第二象限內(nèi)),直線l2與E相交于P,Q兩點(diǎn),MP⊥MQ,求直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.等腰梯形ABCD中,AB∥CD,AD=BC=2,AB=2CD=4,過(guò)C,D分別作AB的垂線,垂足分別為E,F(xiàn),將△BCE,△ADF分別沿CE,DF向上翻折到△B′CE,△A′DF,使得兩個(gè)三角形所在平面分別與平面ABCD垂直.連接AA′,A′B′,B′B.
(1)求證:A′D∥平面CB′B;
(2)求幾何體AA′D-BB′C的體積;
(3)求面AA′D與面BB′C所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.當(dāng)x∈R時(shí),x+$\frac{4}{x}$的取值范圍是( 。
A.(-∞,-4]B.(-∞,-4)∪(4,+∞)C.[4,+∞)D.(-∞,-4]∪[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若向量$\overrightarrow{a}$=(cosθ,sinθ),$\overrightarrow$=($\sqrt{3}$,-1),則|2$\overrightarrow{a}$-$\overrightarrow$|的最大值為( 。
A.4B.2$\sqrt{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.曲線y=x4在(1,1)處的切線方程為(  )
A.4x-y-3=0B.x+4y-5=0C.4x-y+3=0D.x+4y+3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若$\frac{sin(2α-\frac{π}{3})+cos(2α-\frac{π}{6})}{sin2α+co{s}^{2}α}$=$\frac{2}{5}$,則tanα=(  )
A.$\frac{1}{2}$B.2C.$\frac{1}{3}$D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案