分析 (1)當(dāng)a=1時(shí),函數(shù)f(x)=x2-3x+lnx,f′(x)=$\frac{(2x-1)(x-1)}{x}$.令f'(x)=0得:x1=$\frac{1}{2}$,x2=1.列出表格即可得出函數(shù)的單調(diào)性極值;
(2)對于任意的x1∈(0,+∞),x2∈R,不等式f(x1)≤g(x2)恒成立,則有f(x)max≤g(x)min.利用導(dǎo)數(shù)分別在定義域內(nèi)研究其單調(diào)性極值與最值即可.
解答 解:(1)當(dāng)a=1時(shí),函數(shù)f(x)=x2-3x+lnx,f′(x)=$\frac{(2x-1)(x-1)}{x}$.
令f'(x)=0得:x1=$\frac{1}{2}$,x2=1.
當(dāng)x變化時(shí),f'(x),f(x)的變化情況如下表:
x | (0,$\frac{1}{2}$) | $\frac{1}{2}$ | ($\frac{1}{2}$,1) | 1 | (1,+∞) |
f'(x) | + | 0 | - | 0 | + |
f(x) | 單調(diào)遞增 | 極大 | 單調(diào)遞減 | 極小 | 單調(diào)遞增 |
點(diǎn)評 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值,考查了恒成立問題的等價(jià)轉(zhuǎn)化方法,考查了分類討論的思想方法,考察了推理能力和計(jì)算能力,屬于難題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1≤m≤1 | B. | m≤1 | C. | -2≤m≤2 | D. | m≥2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | b=($\sqrt{2}$-1)a | B. | b=($\sqrt{2}$+1)a | C. | b=$\frac{2-\sqrt{2}}{2}$a | D. | b=$\frac{2+\sqrt{2}}{2}$a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $4\sqrt{2}$ | B. | $2\sqrt{2}$ | C. | 4 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3$\sqrt{3}$ | B. | 6$\sqrt{3}$ | C. | 2$\sqrt{3}$ | D. | 4$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{y^2}{16}-\frac{x^2}{4}=1$ | B. | $\frac{y^2}{4}-\frac{x^2}{16}=1$ | C. | $\frac{x^2}{16}-\frac{y^2}{4}=1$ | D. | $\frac{x^2}{4}-\frac{y^2}{16}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | e2016f(-2016)<f(0),f(2016)<e2016f(0) | B. | e2016f(-2016)>f(0),f(2016)>e2016f(0) | ||
C. | e2016f(-2016)<f(0),f(2016)>e2016f(0) | D. | e2016f(-2016)>f(0),f(2016)<e2016f(0) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com