分析 (1)由已知PG=PD,得到∠PDG=∠PGD,由切割弦定理得到∠PDA=∠DBA,進(jìn)一步得到∠EGA=∠DBA,從而∠PFA=∠BDA.最后可得∠BDA=90°,說(shuō)明AB為圓的直徑;
(2)連接BC,DC.由AB是直徑得到∠BDA=∠ACB=90°,然后由Rt△BDA≌Rt△ACB,得到∠DAB=∠CBA.再由∠DCB=∠DAB可推得DC∥AB.進(jìn)一步得到ED為直徑,則ED長(zhǎng)可求.
解答 (1)證明:∵PG=PD,∴∠PDG=∠PGD,
由于PD為切線,故∠PDA=∠DBA,
又∵∠EGA=∠PGD,∴∠EGA=∠DBA,
∴∠DBA+∠BAD=∠EGA+∠BAD,
從而∠PFA=∠BDA.
又AF⊥EP,∴∠PFA=90°,則∠BDA=90°,
故AB為圓的直徑,
∴BD⊥AD.
(2)解:連接BC,DC.
由于AB是直徑,故∠BDA=∠ACB=90°.
在Rt△BDA與Rt△ACB中,AB=BA,AC=BD,從而得Rt△BDA≌Rt△ACB,
于是∠DAB=∠CBA.
又∵∠DCB=∠DAB,∴∠DCB=∠CBA,故DC∥AB.
∵AB⊥EP,∴DC⊥EP,∠DCE為直角,
∴ED為直徑,又由(1)知AB為圓的直徑,
∴DE=AB=6.
點(diǎn)評(píng) 本題考查了直線和圓的位置關(guān)系,考查了圓的切割線定理的應(yīng)用,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2 | B. | 2 | C. | -4 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
年份 | 2011 | 2012 | 2013 | 2014 | 2015 |
時(shí)間代號(hào)t | 1 | 2 | 3 | 4 | 5 |
儲(chǔ)蓄存款y(千億元) | 5 | 6 | 7 | 8 | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 9 | C. | -9 | D. | 1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com