(1)求博物館支付總費用y與保護罩容積V之間的函數(shù)關(guān)系式;
(2)求博物館支付總費用的最小值。

(1)(2)7500元
(1)設(shè)保險費用為      …………4分

即博物館支付總費用y與V的函數(shù)關(guān)系式為
                            …………8分
(2),當且僅當V=4時等號成立。   
博物館支付總費用的最小值為7500元  
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)函數(shù)
(1)求的單調(diào)增區(qū)間和單調(diào)減區(qū)間;
(2)若當時(其中e=2.71828…),不等式恒成立,求實數(shù)m的取值范圍;
(3)若關(guān)于x的方程上恰有兩個相異的實根,求實數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分15分)已知函數(shù)
(Ⅰ)當時,判斷函數(shù)在定義域上的單調(diào)性;
(Ⅱ)若函數(shù)的圖象有兩個不同的交點,求的取值范圍;
(Ⅲ)設(shè)點是函數(shù)圖象上的兩點,平行于的切線以為切點,求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)(其中
(I)求函數(shù)f(x)的反函數(shù)
(II)設(shè),求函數(shù)g(x)最小值及相應(yīng)的x值;
(III)若不等式對于區(qū)間上的每一個x值都成立,求實數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

甲乙兩公司生產(chǎn)同一種新產(chǎn)品,經(jīng)測算,對于函數(shù),及任意的,當甲公司投入萬元作宣傳時,乙公司投入的宣傳費若小于萬元,則乙公司有失敗的危險,否則無失敗的危險;當乙公司投入萬元作宣傳時,甲公司投入的宣傳費若小于萬元,則甲公司有失敗的危險,否則無失敗的危險. 設(shè)甲公司投入宣傳費x萬元,乙公司投入宣傳費y萬元,建立如圖直角坐標系,試回答以下問題:
(1)請解釋
(2)甲、乙兩公司在均無失敗危險的情況下盡可能少地投入宣傳費用,問此時各應(yīng)投入多少宣傳費?
(3)若甲、乙分別在上述策略下,為確保無失敗的危險,根據(jù)對方所投入的宣傳費,按最少投入費用原則,投入自己的宣傳費:若甲先投入萬元,乙在上述策略下,投入最少費用;而甲根據(jù)乙的情況,調(diào)整宣傳費為;同樣,乙再根據(jù)甲的情況,調(diào)整宣傳費為如此得當甲調(diào)整宣傳費為時,乙調(diào)整宣傳費為;試問是否存在的值,若存在寫出此極限值(不必證明),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)處取得極值.
(1)求的值;                                                    
(2)若關(guān)于的方程在區(qū)間上有實根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)求的定義域;
(2)在函數(shù)的圖象上是否存在不同的兩點,使過這兩點的直線平行于軸;
(3)當滿足什么條件時,上恒取正值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在2009年底的哥本哈根大會上,中國向全世界承諾,到2020年底,中國的炭排放將降至2009年炭排放量,目前我國的減排手段有兩種,第一種是通過引進新技術(shù),新工藝使得每年的炭排放比上一年炭排放總量均減少個百分點,第二種是通過教育與宣傳使得全體國民具有節(jié)能減排的意識,進而減少炭排放。
(1):若通過第二種方式的減排量每年均是一個常數(shù),求2011年我國的炭排放量
(2):若全體國民齊心協(xié)力,使第二種方式的減排量能夠占上年的炭排放總量的個百分點,要保證完成減排目標,求滿足的范圍。(已知,,

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(1)已知f()=lgx,求f(x);
(2)已知f(x)是一次函數(shù),且滿足3f(x+1)-2f(x-1)=2x+17,求f(x);
(3)已知f(x)滿足2f(x)+f()=3x,求f(x).

查看答案和解析>>

同步練習冊答案