【題目】選修4-4:坐標系與參數(shù)方程

已知,在直角坐標系中,直線的參數(shù)方程為為參數(shù));在以坐標原點為極點, 軸的正半軸為極軸的極坐標系中,直線的極坐標方程是.

(Ⅰ)求證: ;

(Ⅱ)設(shè)點的極坐標為, 為直線 的交點,求的最大值.

【答案】(1)詳解解析;(2)2

【解析】試題分析:

(1)利用題意由直線一般方程的系數(shù)關(guān)系可得兩直線垂直;

(2)由題意求得點到直線的距離為的最大值即可得的最大值為2.

試題解析:

(Ⅰ)易知直線的普通方程為: .

可變形為 ,

即直線的直角坐標方程為: .

因為

根據(jù)兩直線垂直的條件可知, .

(Ⅱ)當, 時, ,

所以點在直線上.

設(shè)點到直線的距離為,由可知, 的最大值為.

于是 ,

所以的最大值為2.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,氣象部門預(yù)報,在海面上生成了一股較強臺風,在據(jù)臺風中心60千米的圓形區(qū)域內(nèi)將受到嚴重破壞,臺風中心這個從海岸M點登陸,并以72千米/小時的速度沿北偏西60°的方向移動,已知M點位于A城的南偏東15°方向,距A城 千米;M點位于B城的正東方向,距B城 千米,假設(shè)臺風在移動的過程中,其風力和方向保持不變,請回答下列問題:
(1)A城和B城是否會受到此次臺風的侵襲?并說明理由;
(2)若受到此次臺風的侵襲,改城受到臺風侵襲的持續(xù)時間有多少小時?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一兒童游樂場擬建造一個“蛋筒”型游樂設(shè)施,其軸截面如圖中實線所示. 是等腰梯形, 米, 的延長線上, 為銳角). 圓都相切,且其半徑長為米. 是垂直于的一個立柱,則當的值設(shè)計為多少時,立柱最矮?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)

(1)若,求在區(qū)間[0,3]上的最大值;

(2)若,寫出的單調(diào)區(qū)間;

(3)若存在,使得方程有三個不相等的實數(shù)解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓 ),設(shè)為圓軸負半軸的交點,過點作圓的弦,并使弦的中點恰好落在軸上.

(Ⅰ)求點的軌跡的方程;

(Ⅱ)延長交曲線于點,曲線在點處的切線與直線交于點,試判斷以點為圓心,線段長為半徑的圓與直線的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】第96屆(春季)全國糖酒商品交易會于2017年3月23日至25日在四川舉辦.交易會開始前,展館附近一家川菜特色餐廳為了研究參會人數(shù)與餐廳所需原材料數(shù)量的關(guān)系,查閱了最近5次交易會的參會人數(shù)(萬人)與餐廳所用原材料數(shù)量(袋),得到如下數(shù)據(jù):

(Ⅰ)請根據(jù)所給五組數(shù)據(jù),求出關(guān)于的線性回歸方程;

(Ⅱ)已知購買原材料的費用(元)與數(shù)量(袋)的關(guān)系為投入使用的每袋原材料相應(yīng)的銷售收入為600元,多余的原材料只能無償返還.若餐廳原材料現(xiàn)恰好用完,據(jù)悉本次交易會大約有14萬人參加,根據(jù)(Ⅰ)中求出的線性回歸方程,預(yù)測餐廳應(yīng)購買多少袋原材料,才能獲得最大利潤,最大利潤是多少?(注:利潤銷售收入原材料費用).

(參考公式: ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)中,既是偶函數(shù)又在區(qū)間(﹣∞,0)上單調(diào)遞增的是( 。
A.f(x)=
B.f(x)=+1
C.f(x)=
D.f(x)=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓臺的上、下底面半徑分別是2、6,且側(cè)面面積等于兩底面面積之和.
(1)求該圓臺母線的長;
(2)求該圓臺的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點到準線的距離為,直線與拋物線交于兩點,過這兩點分別作拋物線的切線,且這兩條切線相交于點.

(1)若的坐標為,求的值;

(2)設(shè)線段的中點為,點的坐標為,過的直線與線段為直徑的圓相切,切點為,且直線與拋物線交于兩點,證明: .

查看答案和解析>>

同步練習冊答案