【題目】如圖,直線PA垂直于圓O所在的平面,△ABC內(nèi)接于圓O,且AB為圓O的直徑,點(diǎn)M為線段PB的中點(diǎn).現(xiàn)有以下命題:①BC⊥PC;②OM∥平面APC;③點(diǎn)B到平面PAC的距離等于線段BC的長(zhǎng).其中真命題的個(gè)數(shù)為( )
A.3
B.2
C.1
D.0
【答案】A
【解析】解:∵PA⊥圓O所在的平面,BC圓O所在的平面∴PA⊥BC 而BC⊥AC,PA∩AC=A
∴BC⊥面PAC,而PC面PAC
∴BC⊥PC,故①正確;
∵點(diǎn)M為線段PB的中點(diǎn),點(diǎn)O為AB的中點(diǎn)
∴OM∥PA,而OM面PAC,PA面PAC
∴OM∥平面APC,故②正確;
∵BC⊥面PAC
∴點(diǎn)B到平面PAC的距離等于線段BC的長(zhǎng),故③正確
故選A
【考點(diǎn)精析】利用直線與平面垂直的判定對(duì)題目進(jìn)行判斷即可得到答案,需要熟知一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) , 則下列關(guān)于函數(shù)y=f[f(x)]+1的零點(diǎn)個(gè)數(shù)的判斷正確的是( 。
A.當(dāng)k>0時(shí),有3個(gè)零點(diǎn);當(dāng)k<0時(shí),有2個(gè)零點(diǎn)
B.當(dāng)k>0時(shí),有4個(gè)零點(diǎn);當(dāng)k<0時(shí),有1個(gè)零點(diǎn)
C.無論k為何值,均有2個(gè)零點(diǎn)
D.無論k為何值,均有4個(gè)零點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某印刷廠為了研究印刷單冊(cè)書籍的成本(單位:元)與印刷冊(cè)數(shù)(單位:千冊(cè))之間的關(guān)系,在印制某種書籍時(shí)進(jìn)行了統(tǒng)計(jì),相關(guān)數(shù)據(jù)見下表:
印刷冊(cè)數(shù)(千冊(cè)) | 2 | 3 | 4 | 5 | 8 |
單冊(cè)成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲、乙兩種不同的回歸模型,得到兩個(gè)回歸方程,方程甲: ,方程乙: .
(1)為了評(píng)價(jià)兩種模型的擬合效果,完成以下任務(wù).
①完成下表(計(jì)算結(jié)果精確到0.1);
印刷冊(cè)數(shù)(千冊(cè)) | 2 | 3 | 4 | 5 | 8 | |
單冊(cè)成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估計(jì)值 | 2.4 | 2.1 | 1.6 | ||
殘差 | 0 | -0.1 | 0.1 | |||
模型乙 | 估計(jì)值 | 2.3 | 2 | 1.9 | ||
殘差 | 0.1 | 0 | 0 |
②分別計(jì)算模型甲與模型乙的殘差平方和及,并通過比較, 的大小,判斷哪個(gè)模型擬合效果更好.
(2)該書上市之后,受到廣大讀者熱烈歡迎,不久便全部售罄,于是印刷廠決定進(jìn)行二次印刷.根據(jù)市場(chǎng)調(diào)查,新需求量為8千冊(cè)(概率0.8)或10千冊(cè)(概率0.2),若印刷廠以每?jī)?cè)5元的價(jià)格將書籍出售給訂貨商,問印刷廠二次印刷8千冊(cè)還是10千冊(cè)能獲得更多利潤(rùn)?(按(1)中擬合效果較好的模型計(jì)算印刷單冊(cè)書的成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面ABCD是矩形,平面PAB⊥平面ABCD,PA=AB=3,BC=2,E、F分別是棱AD,PC的中點(diǎn)
(1)求證:EF⊥平面PBC
(2)若直線PC與平面ABCD所成角為 ,點(diǎn)P在AB上的射影O在靠近點(diǎn)B的一側(cè),求二面角P﹣EF﹣A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)m,n是兩條不同的直線,α,β是兩個(gè)不重合的平面,給定下列四個(gè)命題,其中為真命題的是( ) ① ;② ;
③ ;④ .
A.①和②
B.②和③
C.③和④
D.①和④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)圓(x+1)2+y2=25的圓心為C,A(1,0)是圓內(nèi)一定點(diǎn),Q為圓周上任一點(diǎn).線段AQ的垂直平分線與CQ的連線交于點(diǎn)M,則M的軌跡方程為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線x2=2py(p>0)與直線2x﹣y+1=0交于A,B兩點(diǎn), ,點(diǎn)M在拋物線上,MA⊥MB.
(1)求p的值;
(2)求點(diǎn)M的橫坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=(log2x)2﹣2alog2x+b(x>0).當(dāng)x= 時(shí),f(x)有最小值﹣1.
(1)求a與b的值;
(2)求滿足f(x)<0的x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《張邱建算經(jīng)》是中國(guó)古代數(shù)學(xué)史上的杰作,該書中有首古民謠記載了一數(shù)列問題:“南山一棵竹, 竹尾風(fēng)割斷, 剩下三十節(jié),一節(jié)一個(gè)圈. 頭節(jié)高五寸①,頭圈一尺三②.逐節(jié)多三分③,逐圈少分三④. 一蟻往上爬,遇圈則繞圈. 爬到竹子頂,行程是多遠(yuǎn)?”(注釋:①第一節(jié)的高度為尺;②第一圈的周長(zhǎng)為尺;③每節(jié)比其下面的一節(jié)多尺;④每圈周長(zhǎng)比其下面的一圈少尺) 問:此民謠提出的問題的答案是
A. 尺 B. 尺
C. 尺 D. 尺
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com