【題目】《張邱建算經(jīng)》是中國古代數(shù)學史上的杰作,該書中有首古民謠記載了一數(shù)列問題:“南山一棵竹, 竹尾風割斷, 剩下三十節(jié),一節(jié)一個圈. 頭節(jié)高五寸,頭圈一尺三.逐節(jié)多三分,逐圈少分三. 一蟻往上爬,遇圈則繞圈. 爬到竹子頂,行程是多遠?”(注釋:第一節(jié)的高度為尺;第一圈的周長為尺;每節(jié)比其下面的一節(jié)多尺;每圈周長比其下面的一圈少尺) 問:此民謠提出的問題的答案是

A. B.

C. D.

【答案】B

【解析】因為每竹節(jié)間的長相差尺,

設從地面往長,每節(jié)竹長為,

所以是以為首項,以為公差的等差數(shù)列,

由題意知竹節(jié)圈長,后以圈比前一圈細尺,

設從地面往爬,每節(jié)節(jié)圈長為,

是以為首項, 為公差的等差數(shù)列,

所以一螞蟻往上爬,遇圈則繞圈,爬到竹子項,行程是:

,故選B.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直線PA垂直于圓O所在的平面,△ABC內接于圓O,且AB為圓O的直徑,點M為線段PB的中點.現(xiàn)有以下命題:①BC⊥PC;②OM∥平面APC;③點B到平面PAC的距離等于線段BC的長.其中真命題的個數(shù)為(
A.3
B.2
C.1
D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有下列五個命題: ①平面內,到一定點的距離等于到一定直線距離的點的集合是拋物線;
②平面內,定點F1、F2 , |F1F2|=6,動點M滿足|MF1|+|MF2|=6,則點M的軌跡是橢圓;
③在△ABC中,“∠B=60°”是“∠A,∠B,∠C三個角成等差數(shù)列”的充要條件;
④“若﹣3<m<5,則方程 =1是橢圓”.
⑤已知向量 , , 是空間的一個基底,則向量 + , , 也是空間的一個基底.
其中真命題的序號是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,
(1)求f(x)的定義域;
(2)求使f(x)>0的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)中,在區(qū)間(﹣∞,0)上是增函數(shù)的是(
A.
B.y=|x﹣1|
C.y=x2﹣4x+8
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是一塊地皮,其中, 是直線段,曲線段是拋物線的一部分,且點是該拋物線的頂點, 所在的直線是該拋物線的對稱軸.經(jīng)測量, km, km, .現(xiàn)要從這塊地皮中劃一個矩形來建造草坪,其中點在曲線段上,點 在直線段上,點在直線段上,設km,矩形草坪的面積為km2

(1)求,并寫出定義域;

(2)當為多少時,矩形草坪的面積最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), , ,且的最小值為

(1)求的值;

(2)若不等式對任意恒成立,其中是自然對數(shù)的底數(shù),求的取值范圍;

(3)設曲線與曲線交于點,且兩曲線在點處的切線分別為, .試判斷 軸是否能圍成等腰三角形?若能,確定所圍成的等腰三角形的個數(shù);若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=1﹣ (x>0),若存在實數(shù)a,b(a<b),使y=f(x)的定義域為(a,b)時,值域為(ma,mb),則實數(shù)m的取值范圍是(
A.
B.
C. 且m≠0
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓O:x2+y2=16及圓內一點F(﹣3,0),過F任作一條弦AB.
(1)求△AOB面積的最大值及取得最大值時直線AB的方程;
(2)若點M在x軸上,且使得MF為△AMB的一條內角平方線,求點M的坐標.

查看答案和解析>>

同步練習冊答案