【題目】下列說法正確的是( )
A. 設(shè)是實(shí)數(shù),若方程表示雙曲線,則.
B. “為真命題”是“為真命題”的充分不必要條件.
C. 命題“,使得”的否定是:“,”.
D. 命題“若為的極值點(diǎn),則”的逆命題是真命題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若方程有兩個(gè)不相等的實(shí)數(shù)根,,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】本題滿分14分)
在數(shù)列中,,且.
(Ⅰ) 求,猜想的表達(dá)式,并加以證明;
(Ⅱ) 設(shè),求證:對(duì)任意的自然數(shù),都有;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,短軸長(zhǎng)為4.
(1)求橢圓C的標(biāo)準(zhǔn)方程.
(2)設(shè)直線l過點(diǎn)(2,0)且與橢圓C相交于不同的兩點(diǎn)A、B,直線與x軸交于點(diǎn)D,E是直線上異于D的任意一點(diǎn),當(dāng)時(shí),直線BE是否恒過x軸上的定點(diǎn)?若過,求出定點(diǎn)坐標(biāo),若不過,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某樂園按時(shí)段收費(fèi),收費(fèi)標(biāo)準(zhǔn)為:每玩一次不超過小時(shí)收費(fèi)10元,超過小時(shí)的部分每小時(shí)收費(fèi)元(不足小時(shí)的部分按小時(shí)計(jì)算).現(xiàn)有甲、乙二人參與但都不超過小時(shí),甲、乙二人在每個(gè)時(shí)段離場(chǎng)是等可能的。為吸引顧客,每個(gè)顧客可以參加一次抽獎(jiǎng)活動(dòng)。
(1) 用表示甲乙玩都不超過小時(shí)的付費(fèi)情況,求甲、乙二人付費(fèi)之和為44元的概率;
(2)抽獎(jiǎng)活動(dòng)的規(guī)則是:顧客通過操作按鍵使電腦自動(dòng)產(chǎn)生兩個(gè)[0,1]之間的均勻隨機(jī)數(shù),并按如右所示的程序框圖執(zhí)行.若電腦顯示“中獎(jiǎng)”,則該顧客中獎(jiǎng);若電腦顯示“謝謝”,則不中獎(jiǎng),求顧客中獎(jiǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體的棱長(zhǎng)為,點(diǎn)分別為棱的中點(diǎn),下列結(jié)論中,其中正確的個(gè)數(shù)是( )
①過三點(diǎn)作正方體的截面,所得截面為正六邊形;
②/平面;
③;
④異面直線與所成角的正切值為;
⑤四面體的體積等于
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,將繞邊AB翻轉(zhuǎn)至,使面面ABC,D是BC的中點(diǎn),設(shè)Q是線段PA上的動(dòng)點(diǎn),則當(dāng)PC與DQ所成角取得最小值時(shí),線段AQ的長(zhǎng)度為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面平面,,,,,,.
(1)求直線與平面所成角的正弦值.
(2)在棱上是否存在點(diǎn),使得平面?若存在,求的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知是一幢6層的寫字樓,每層高均為3m,在正前方36m處有一建筑物,從樓頂處測(cè)得建筑物的張角為.
(1)求建筑物的高度;
(2)一攝影愛好者欲在寫字樓的某層拍攝建筑物.已知從攝影位置看景物所成張角最大時(shí),拍攝效果最佳.問:該攝影愛好者在第幾層拍攝可取得最佳效果(不計(jì)人的高度)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com