4.若函數(shù)f(x)滿足xf′(x)>-f(x),則下列關(guān)系一定正確的是(  )
A.2f(1)>f(2)B.2f(2)>f(1)C.f(1)>f(2)D.f(1)<f(2)

分析 由已知xf′(x)>-f(x),可想到構(gòu)造函數(shù)g(x)=xf(x),求導(dǎo)得到其單調(diào)性,則答案可求.

解答 解:令g(x)=xf(x),
則g′(x)=f(x)+xf′(x)>0,
∴g(x)是增函數(shù),
∴g(2)>g(1),
即2f(2)>f(1).
故選:B.

點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了函數(shù)構(gòu)造法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.如表為隨機(jī)變量X的概率分布列,記成功概率p=P(X≥3),隨機(jī)變量ξ~B(5,p),則P(ξ=3)=$\frac{1}{12}$.
X1234
P$\frac{1}{4}$mm$\frac{7}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.雙曲線3x2-y2=75上一點(diǎn)P到它的一個(gè)焦點(diǎn)距離等于12,那么點(diǎn)P到它的另一個(gè)焦點(diǎn)的距離等于( 。
A.2或22B.22C.2D.7或17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)A={x|-1<x<2},B={x|0<x<3},則A∪B=(-1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在正四棱柱ABCD-A1B1C1D1中,E為DD1的中點(diǎn),求證:
(1)求證:BD1∥平面EAC;
(2)平面BDD1⊥平面AB1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)集合A={x|a≤x≤a+3},集合B={x|x2-4x-5>0},分別就下列條件求實(shí)數(shù)a的取值范圍:
(1)A∩B≠∅,
(2)A∩B=A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x+y≥1\\ x-2y≤4\\ x+4y≤8\end{array}\right.$,則x+2y的最小值是( 。
A.$-\frac{4}{3}$B.0C.$\frac{4}{3}$D.$\frac{10}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知f(x)=$\left\{\begin{array}{l}({3a-1})x+4a({x<1})\\ \frac{a}{x}-a({x≥1})\end{array}\right.$是(-∞,+∞)上的減函數(shù),那么a的取值范圍是(  )
A.(0,1)B.(0,$\frac{1}{3}$)C.[$\frac{1}{7}$,$\frac{1}{3}$)D.[$\frac{1}{7}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=1-cos2(x-$\frac{5π}{12}$),g(x)=1+$\frac{1}{2}$sin2x.
(1)設(shè)x=x0是函數(shù)y=f(x)圖象的一條對(duì)稱軸,求g(x0)的值;
(2)求函數(shù)h(x)=f(x)+g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案