14.已知函數(shù)f(x)=1-cos2(x-$\frac{5π}{12}$),g(x)=1+$\frac{1}{2}$sin2x.
(1)設(shè)x=x0是函數(shù)y=f(x)圖象的一條對(duì)稱軸,求g(x0)的值;
(2)求函數(shù)h(x)=f(x)+g(x)的單調(diào)遞增區(qū)間.

分析 (1)化簡(jiǎn)函數(shù)f(x),由x=x0是函數(shù)y=f(x)圖象的一條對(duì)稱軸,得出x0的值,計(jì)算g(x0)即可;
(2)求出函數(shù)h(x)的解析式,利用正弦函數(shù)的圖象與性質(zhì)求出它的單調(diào)遞增區(qū)間.

解答 解:函數(shù)f(x)=1-cos2(x-$\frac{5π}{12}$)
=sin2(x-$\frac{5π}{12}$)
=$\frac{1-cos(2x-\frac{5π}{6})}{2}$
=$\frac{1}{2}$+$\frac{1}{2}$cos(2x+$\frac{π}{6}$),
g(x)=1+$\frac{1}{2}$sin2x;
(1)∵x=x0是函數(shù)y=f(x)圖象的一條對(duì)稱軸,
∴x0=$\frac{kπ}{2}$-$\frac{π}{12}$,k∈Z,
∴g(x0)=1+$\frac{1}{2}$sin(kπ-$\frac{π}{6}$)=$\frac{3}{4}$或$\frac{5}{4}$;
(2)函數(shù)h(x)=f(x)+g(x)
=$\frac{3}{2}$+$\frac{1}{2}$sin(2x+$\frac{π}{3}$),
令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,
解得kπ-$\frac{5π}{12}$≤x≤kπ+$\frac{π}{12}$,k∈Z,
所以f(x)的單調(diào)遞增區(qū)間是[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$],k∈Z.

點(diǎn)評(píng) 本題考查了三角函數(shù)的化簡(jiǎn)與運(yùn)算問題,也考查了正弦函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若函數(shù)f(x)滿足xf′(x)>-f(x),則下列關(guān)系一定正確的是(  )
A.2f(1)>f(2)B.2f(2)>f(1)C.f(1)>f(2)D.f(1)<f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知集合A={a,b},B={x|x∈A},C={x|x⊆A},試判斷A、B、C之間的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,其中b=c=2,若函數(shù)f(x)=$\frac{1}{4}$x3-$\frac{3}{4}$x的極大值是cosA,則△ABC的形狀為( 。
A.等腰三角形B.直角三角形C.等邊三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,兩圓⊙O,⊙O′內(nèi)切于點(diǎn)T,點(diǎn)P為外圓⊙O上任意一點(diǎn),PM與內(nèi)圓⊙O′切于點(diǎn)M.求證:PM:PT為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}|{{{log}_3}x}|,0<x<3\\ sin({\frac{π}{6}x}),3≤x≤15\end{array}$,若存在實(shí)數(shù)x1,x2,x3,x4,滿足x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),則$\frac{{{x_3}+{x_4}}}{{{x_1}{x_2}}}$的值等于(  )
A.18πB.18C.D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如果兩個(gè)變量之間的線性相關(guān)程度很高,則其相關(guān)系數(shù)r的絕對(duì)值應(yīng)接近于(  )
A.0B.0.5C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.表中的數(shù)陣為“森德拉姆數(shù)篩”,其特點(diǎn)是每行每列都成等差數(shù)列,記第i行第j列的數(shù)為aij.則表中的數(shù)52共出現(xiàn)4次.
234567
35791113
4710131619
5913172125
61116212631
71319253137

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知Sn為等差數(shù)列{an}的前n項(xiàng)和,a3+a7=6,則S9=( 。
A.27B.$\frac{27}{2}$C.54D.108

查看答案和解析>>

同步練習(xí)冊(cè)答案