精英家教網 > 高中數學 > 題目詳情

【題目】某地區(qū)某長產品近幾年的產量統計如表:

年份

2012

2013

2014

2015

2016

2017

年份代碼

1

2

3

4

5

6

年產量(萬噸)

6.6

6.7

7

7.1

7.2

7.4

(1)根據表中數據,建立關于的線性回歸方程;

(2)若近幾年該農產品每千克的價格(單位:元)與年產量滿足的函數關系式為,且每年該農產品都能售完.

①根據(1)中所建立的回歸方程預測該地區(qū)2018()年該農產品的產量;

②當)為何值時,銷售額最大?

附:對于一組數據,…,,其回歸直線的斜率和截距的最小二乘估計分別為:,.

【答案】(1);(2)①7.56萬噸;②年銷售額最大.

【解析】分析:(1)先求均值,代入公式得 ,再根據 ,(2) ①即求自變量為7對應函數值,②先列銷售額的函數關系式,再根據對稱軸與定義區(qū)間位置關系確定最大值取法.

詳解:(1)由題意可知:

,

,

,

,

關于的線性回歸方程為.

(2)①由(1)知,,當時,,即2018年該農產品的產量為7.56萬噸.

②當年產量為時,銷售額(萬元),

時,函數取得最大值,又因,

計算得當,即時,即年銷售額最大.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數為定義在上的奇函數,且當時,

(Ⅰ)求函數的解析式;

(Ⅱ)求函數在區(qū)間 上的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)討論函數的單調性;

(2)設,當時,對任意,存在,使,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設定義域為R的函數

(1)在平面直角坐標系中作出函數fx)的圖象,并指出fx)的單調區(qū)間(不需證明);

2)若方程fx+5a0有兩個解,求出a的取值范圍(不需嚴格證明,簡單說明即可);

3)設定義域為R的函數gx)為偶函數,且當x≥0時,gx)=fx),求gx)的解析式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知

(1)求的單調區(qū)間;

(2)設,為函數的兩個零點,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點為圓的圓心, 是圓上的動點,點在圓的半徑上,且有點上的點,滿足, .

1)當點在圓上運動時,求點的軌跡方程;

2)若斜率為的直線與圓相切,直線與(1)中所求點的軌跡交于不同的兩點, 是坐標原點,且時,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某中學有初中學生1800人,高中學生1200人.為了解學生本學期課外閱讀時間,現采用分層抽樣的方法,從中抽取了100名學生,先統計了他們課外閱讀時間,然后按“初中學生”和“高中學生”分為兩組,再將每組學生的閱讀時間(單位:小時)分為5組:[0,10),[10,20),[20,30),[30,40),[40,50],并分別加以統計,得到如下圖所示的頻率分布直方圖.

(I)寫出a的值;

(II)試估計該校所有學生中,閱讀時間不小于30個小時的學生人數;

(III)從閱讀時間不足10個小時的樣本學生中隨機抽取3人,并用X表示其中初中生的人數,求X的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的右焦點與拋物線的焦點重合,且橢圓的離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)設是橢圓的右頂點,過點作兩條直線分別與橢圓交于另一點,若直線的斜率之積為,求證:直線恒過一個定點,并求出這個定點的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解本屆高二學生對文理科的選擇與性別是否有關,現隨機從高二的全體學生中抽取了若干名學生,據統計,男生35人,理科生40人,理科男生30人,文科女生15人。

(1)完成如下2×2列聯表,判斷是否有99.9%的把握認為本屆高二學生“對文理科的選擇與性別有關”?

男生

女生

合計

文科

理科

合計

(2)已采用分層抽樣的方式從樣本的所有女生中抽取了5人,現從這5人中隨機抽取2人參加座談會,求抽到的2人恰好一文一理的概率。

0.15

0.10

0.05

0.01

0.005

0.001

k

2.072

2.706

3.841

6.635

7.879

10.828

(參考公式,其中為樣本容量)

查看答案和解析>>

同步練習冊答案