9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2^x}{,^{\;}}x∈[-1,1]\\{(x-2)^2}+1{,^{\;}}^{\;}x∈({1,4}]\end{array}$.
(1)在給定的直角坐標(biāo)系內(nèi)畫出f(x)的圖象;
(2)寫出f(x)的單調(diào)遞增區(qū)間和最值及取得最值時(shí)x的值(不需要證明);
(3)若方程f(x)-a=0,有三個(gè)實(shí)數(shù)根,求a的取  值范圍.

分析 (1)根據(jù)已知聽函數(shù)解析式,結(jié)合指數(shù)函數(shù)和二次函數(shù)的圖象和性質(zhì),可得f(x)的圖象;
(2)根據(jù)(1)中圖象,可得:f(x)的單調(diào)遞增區(qū)間和最值及取得最值時(shí)x的值;
(3)若方程f(x)-a=0,有三個(gè)實(shí)數(shù)根,函數(shù)f(x)=$\left\{\begin{array}{l}{2^x}{,^{\;}}x∈[-1,1]\\{(x-2)^2}+1{,^{\;}}^{\;}x∈({1,4}]\end{array}$的圖象與y=a有三個(gè)交點(diǎn),進(jìn)而可得a的取值范圍.

解答 解:(1)函數(shù)f(x)=$\left\{\begin{array}{l}{2^x}{,^{\;}}x∈[-1,1]\\{(x-2)^2}+1{,^{\;}}^{\;}x∈({1,4}]\end{array}$的圖象如圖所示:
(2)由圖可得:
f(x)的單調(diào)遞增區(qū)間為:(-1,1)和(2,4],
當(dāng)x=-1,${y_{min}}=\frac{1}{2}$;當(dāng)x=4,ymax=5
(3)若方程f(x)-a=0,有三個(gè)實(shí)數(shù)根,
則函數(shù)f(x)=$\left\{\begin{array}{l}{2^x}{,^{\;}}x∈[-1,1]\\{(x-2)^2}+1{,^{\;}}^{\;}x∈({1,4}]\end{array}$的圖象與y=a有三個(gè)交點(diǎn),
則a∈(1,2)

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)的圖象,分段函數(shù)的應(yīng)用,數(shù)形結(jié)合思想,函數(shù)的單調(diào)性,函數(shù)的最值,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知等差數(shù)列{an}的公差d>0,且a1•a6=11,a3+a4=12.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{$\frac{{a}_{n+1}-2{a}_{n}}{{2}^{n+1}}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.命題“?x∈R,x2-2x-3>0”的否定是“?x∈R,x2-2x-3≤0”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}中,a1=3,an+1=can+m(c,m為常數(shù))
(1)當(dāng)c=1,m=1時(shí),求數(shù)列{an}的通項(xiàng)公式an;
(2)當(dāng)c=2,m=-1時(shí),證明:數(shù)列{an-1}為等比數(shù)列;
(3)在(2)的條件下,記bn=$\frac{1}{{a}_{n}-1}$,Sn=b1+b2+…+bn,證明:Sn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知A={x|2x2+ax+2=0},B={x|x2+3x-b=0},且A∩B={2}.
(1)求a,b的值;
(2)設(shè)全集U=AUB,求(∁UA)U(∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.兩直線l1,l2的方程分別為x+y$\sqrt{1-cosθ}$+b=0和xsinθ+y$\sqrt{1+cosθ}$-a=0(a,b為實(shí)常數(shù)),θ為第三象限角,則兩直線l1,l2的位置關(guān)系是(  )
A.相交且垂直B.相交但不垂直C.平行D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知f(x)=2sin(ωx)(ω>0)在[-$\frac{π}{4}$,$\frac{2π}{3}$]上單調(diào)遞增,則ω的取值范圍是(0,$\frac{3}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)集合A={0,2,4,6,8,10},B={4,8},則∁AB={0,2,6,10}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=log4(2x+3-x2).
(1)求函數(shù)f(x)的單調(diào)區(qū)間,
(2)當(dāng)x∈(0,$\frac{3}{2}$]時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案