A. | $\frac{{\sqrt{5}}}{5}$ | B. | $\frac{1}{5}$ | C. | $-\frac{{\sqrt{5}}}{5}$ | D. | $-\frac{1}{5}$ |
分析 根據(jù)向量的坐標(biāo)運(yùn)算和向量的平行求出k的值,再根據(jù)向量的夾角公式即可求出.
解答 解:∵$\overrightarrow a$=(3,1),$\overrightarrow b$=(1,3),$\overrightarrow c$=(k,-2),
∴${\overrightarrow a$-$\overrightarrow c}$=(k-3,-3),
∵(${\overrightarrow a$-$\overrightarrow c}$)∥$\overrightarrow b$,
∴3(k-3)=1×(-3),
∴k=2,
∴$\overrightarrow{a}•\overrightarrow{c}$=3×2+1×(-2)=4,
∴|$\overrightarrow a$|=$\sqrt{10}$,|$\overrightarrow c$|=2$\sqrt{2}$,
∴cos<$\overrightarrow a$,$\overrightarrow c$>=$\frac{\overrightarrow{a}•\overrightarrow{c}}{|\overrightarrow{a}|•|\overrightarrow{c}|}$=$\frac{4}{\sqrt{10}•2\sqrt{2}}$=$\frac{\sqrt{5}}{5}$,
故選:A.
點(diǎn)評(píng) 本題考查了向量的坐標(biāo)運(yùn)算和向量的夾角公式,以及向量平行,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | ln(1+$\frac{1}{e}$)+1 | D. | ln(2+$\frac{1}{e}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 3個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -2 | C. | -$\frac{1}{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com