5.下列對應:
①x→$\frac{2}{x}$,x≠0,x∈R;
②x→y,這里y2=x,x∈N,y∈R;
③A={(x,y)|x,y∈R},B=R,對任意的(x,y)∈A,(x,y)→x+y
能成為函數(shù)的有(  )
A.0個B.1個C.2個D.3個

分析 利用函數(shù)的定義,一一判斷,即可得出結論.

解答 解:(1)對于任意一個非零實數(shù)x,$\frac{2}{x}$被x唯一確定,所以當x≠0 時,x→$\frac{2}{x}$是函數(shù),
可表示為f(x)=$\frac{2}{x}$(x≠0);
(2)當x=4時,y2=4,得y=2或y=-2,不是有唯一值和x對應,所以,x→y(y2=x)不是函數(shù);
(3)不是,因為集合A不是數(shù)集.
故選:B.

點評 本題考查函數(shù)的定義,考查學生分析解決問題的能力,正確理解函數(shù)的定義是關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

15.設數(shù)列{an}的前n項和為Sn,且Sn+$\frac{1}{3}$an=1(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=[2log${\;}_{\frac{1}{4}}$($\frac{1}{3}$an)-7]cosnπ+an,求數(shù)列{bn}前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.設等差數(shù)列{an}的前n項和為Sn,若S6>S7>S5,則an>0的最大n=6,滿足SkSk+1<0的正整數(shù)k=12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知數(shù)列{an}的前n項和為Sn,點(n,Sn)在拋物線y=$\frac{3}{2}$x2+$\frac{1}{2}$x上,各項都為正數(shù)的等比數(shù)列{bn}滿足b2=$\frac{1}{4}$,b4=$\frac{1}{16}$.
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)記Cn=a${\;}_{{a}_{n}}$+b${\;}_{{a}_{n}}$,求數(shù)列{Cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知向量$\overrightarrow a$=(3,1),$\overrightarrow b$=(1,3),$\overrightarrow c$=(k,-2),若(${\overrightarrow a$-$\overrightarrow c}$)∥$\overrightarrow b$,則向量$\overrightarrow a$與向量$\overrightarrow c$的夾角的余弦值是( 。
A.$\frac{{\sqrt{5}}}{5}$B.$\frac{1}{5}$C.$-\frac{{\sqrt{5}}}{5}$D.$-\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知函數(shù)f(x)的圖象關于直線x=1對稱,當x2>x1>1時,[f(x2)-f(x1)](x2-x1)<0恒成立,設a=f(-$\frac{1}{2}$),b=f(2),c=f(e),則a,b,c的大小關系為( 。
A.c>a>bB.c>b>aC.a>c>bD.b>a>c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=x-1+$\frac{a}{{e}^{x}}$(x∈R,e為自然對數(shù)的底數(shù)).
(1)求函數(shù)f(x)的極值;
(2)當a=1時,若直線l:y=kx-1與曲線y=f(x)沒有公共點,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知函數(shù)f(x)=-x|x|,則(  )
A.f(x)既是奇函數(shù)又是增函數(shù)B.f(x)既是偶函數(shù)又是增函數(shù)
C.f(x)既是奇函數(shù)又是減函數(shù)D.f(x)既是偶函數(shù)又是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.$\int_{-2}^2{{e^{|x|}}}$dx=( 。
A.e2+1B.2e2-1C.2e2-2D.e2-1

查看答案和解析>>

同步練習冊答案