下列選項(xiàng)中不是右圖中幾何體的三種視圖之一的是( 。
A、
B、
C、
D、
考點(diǎn):簡(jiǎn)單空間圖形的三視圖
專題:作圖題,空間位置關(guān)系與距離
分析:由題意,A為幾何體的正視圖,B為幾何體的側(cè)視圖,C為幾何體的俯視圖,即可得出結(jié)論.
解答: 解:由題意,A為幾何體的正視圖,B為幾何體的側(cè)視圖,C為幾何體的俯視圖,
故選:D.
點(diǎn)評(píng):三視圖的畫圖規(guī)則:①主、俯視圖長(zhǎng)對(duì)正;主、左視圖高平齊;俯、左視圖寬相等;②分界線與可見(jiàn)的輪廓線都用實(shí)線畫出,不可見(jiàn)的輪廓線用虛線畫出.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)的定義域?yàn)閇0,1],f(0)=f(1),且對(duì)任意不同的x1,x2都有|f(x2)-f(x1)|<|x2-x1|,求證:|f(x2)-f(x1)|≤
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

空間三條直線,任何兩條不共面,且兩兩互相垂直,另一條直線l與這三條直線所成的角均為α,則tanα=( 。
A、1
B、
2
C、
3
D、2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知E:(x+
3
2+y2=16,點(diǎn)F(
3
,0),點(diǎn)P是圓E上任意一點(diǎn),線段PF的垂直平分線和半徑PE相交于點(diǎn)Q.記動(dòng)點(diǎn)Q的軌跡為C,另有動(dòng)點(diǎn)M(x,y)(x≥0)到點(diǎn)N(2,0)的距離比它到直線x=-1的距離多1,記點(diǎn)M的軌跡為C1,軌跡C2的方程為x2=y
(1)求軌跡C和C1的方程
(2)已知點(diǎn)T(-1,0),設(shè)軌跡C1與C2異于原點(diǎn)O的交點(diǎn)為R,若懂直線l與直線OR垂直,且與軌跡C交于不同的兩點(diǎn)A、B,求
TA
TB
的最小值
(3)在滿足(2)中的條件下,當(dāng)
TA
TB
取得最小值時(shí),求△TAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,b>0,則下列不等式中不恒成立的是( 。
A、
ab
2ab
a+b
B、(a+b)(
1
a
+
1
b
)≥4
C、
|a-b|
a
-
b
D、a2+b2+1≥2a+2b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)簡(jiǎn)單幾何體的主視圖,左視圖如圖所示,則其俯視圖不可能為( 。
A、長(zhǎng)方形B、直角三角形
C、圓D、橢圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下有關(guān)線性回歸分析的說(shuō)法不正確的是( 。
A、在回歸線方程
y
=0.4x+12中,當(dāng)自變量x每增加一個(gè)單位時(shí),變量
y
平均增加約為0.4個(gè)單位
B、用最二乘法求回歸直線方程,是尋求使
x
n+1
(y1-bx-a)2最小的a,b的值
C、相關(guān)系數(shù)為r,若r2越接近1,則表明回歸線的效果越好
D、相關(guān)系數(shù)r越小,表明兩個(gè)變量相關(guān)性越弱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,且a≠1,設(shè)命題p:0<a<1;q:方程ax2-x+
1
2
=0有兩個(gè)不等的實(shí)數(shù)根.若“p∧q”為假命題,“p∨q”為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

利用校園內(nèi)圍墻一角和籬笆圍成一個(gè)面積為128m2的直角梯形花園,已知兩圍墻所成角為135°(如圖),則所用籬笆總長(zhǎng)度的最小值為( 。
A、16
3
m
B、32m
C、64m
D、16m

查看答案和解析>>

同步練習(xí)冊(cè)答案